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ABSTRACT

Methods of interpolation and quadrature have been used for over 300 years. Im-

provements in the techniques have been made by many, most notably by Gauss, whose

technique applied to polynomials is referred to as Gaussian Quadrature. Stieltjes

extended Gauss's method to certain non-polynomial functions as early as 1884. Con-

ditions that guarantee the existence of quadrature formulas for certain collections of

functions were studied by Tchebycheff, and his work was extended by others. Today,

a class of functions which satisfies these conditions is called a Tchebycheff System.

This thesis contains the definition of a Tchebycheff System, along with the theorems,

proofs, and definitions necessary to guarantee the existence of quadrature formulas

for such systems.

Solutions of discretely observable linear control systems are of particular interest,

and observability with respect to a given output function is defined. The output

function is written as a linear combination of a collection of orthonormal functions.

Orthonormal functions are defined, and their properties are discussed.

The technique for evaluating the coefficients in the output function involves eval-

uating the definite integral of functions which can be shown to form a Tchebycheff

system. Therefore, quadrature formulas for these integrals exist, and in many cases

are known.

The technique given is useful in cases where the method of direct calculation is

unstable. The condition number of a matrix is defined and shown to be an indication

of the the degree to which perturbations in data affect the accuracy of the solution.

In special cases, the number of data points required for direct calculation is the same

as the number required by the method presented in this thesis. But the method is

shown to require more data points in other cases. A lower bound for the number of

data points required is given.

°.,
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CHAPTER I

INTRODUCTION

In the study of discretely observable linear control systems, a system of first order

linear differential equations _.= Az is given, where A is an n × n constant matrix, and

z(t) = (zl(t),z2(t),... ,z,,(t)) E _ for t in an interval I. An output function y is a

linear combination of the coordinates of z; i. e., y(t) = clz_(t)+c2x2(t)+." .+c,_zn(t).

A system is said to be observable if the initial value z(to) is uniquely determined by

the output function y. The system is said to be discretely observable if the values of

y(t) and some of its derivatives are known for a discrete set of values of t. (The data

points required will be defined in Chapter V.)

The output function y typically has the form

$

y(t) - _ ri(t)e _'t, (I.i)
i=l

where for each i, r_ is a polynomial to be determined, and Ai is a constant. The

polynomials in the solution can be calculated directly if an adequate number of data

points are given. But two problems arise if the dimension of the system is large. First,

a direct calculation would require the inversion of a matrix of high order, and this

might not be practical. Second, even if the inversion of the matrix is carried out, the

accuracy of the solution depends upon the accuracy of the data being used. For some

matrices, slight perturbations in the data can lead to large errors in the solution.

In this thesis, the solution y will be re-formulated using a new matrix known to be

stable; that is, one which is minimally sensitive to perturbations in the data. Also,

by using a collection of orthogonal functions, the constants in the solution can be

expressed as integrals which can be calculated from the data points using quadrature

methods, thus avoiding the necessity of actually inverting the matrix.

Many methods of approximating the value of a definite integral have long been

known. Integration formulas of interpolatory type are those found by approximating

an integrand with a polynomial and then integrating the polynomial. The approxi-

mating polynomial is one for which the values of the polynomial and the function are

equal at a set of distinct points in the interval of integration. This method yields the



approximating formula
n

fl f(x) dx _ _ w_f(xk).
k=O

Ifthe function f isa polynomial of degree lessthan or equal to n then the formula is

exact.

Functions other than polynomials have the property that their integrals can be

expressed exactly in this way. Suppose f is a function and tl,t2,.., t,_ are points in

an interval I. If
Ek

fl f(x)dx - __, wkf(xk)
k=O

then E_=o wkf(zk) is said to be a quadrature formula. The points tl, t2,-.', tn are

called nodes, and the constants wl,w2,..., w,_ are called weights.

In general, there exist classes of functions for which a single quadrature formula

is exact for each function in the class. Let ul,u2,...,u,_,.., be functions which are

integrable over an interval I. If there exist points tl,t2,.--,tm in I and constants

wx, w2,-" ,w,_ such that

ft u,(t)dt = __, wku,(tk)
k-----O

for each i = 1,2,--., n then the rule will be said to have degree of exactness n. If the

functions u_ are the polynomials 1, t, t2, t3, .. ., and tx, tz,..., t, are distinct points in

I, there exist weights wl,wz,...,w_ such that for all polynomials f of degree less

than or equal to n - 1 the quadrature formula is exact. If the points tl, tz," • •, t,, are

chosen appropriately, the degree of exactness of the formula can be as great as 2n - 1.

In the latter part of the 17th century, Newton approximated a function f by

constructing the unique polynomial of degree less than or equal to n - 1 which passed

through a set of n distinct points of the function. The polynomial was expressed in

terms of divided differences, but the form which we find convenient today is the one

devised in 1795 by Lagrange.

After learning of Newton's ideas, Roger Cotes approximated the integral of a

function with the integral of the interpolating polynomial which agreed with the

function at equally spaced nodes. He computed the weights wl,w2,...,w,_ in the

quadrature formula for all n _< 11. The trapezoidal and Simpson rules are special

Cases.



Gauss raised the question of what the maximum degree of exactness would be

if the nodes could be chosen arbitrarily. He used his theory of continued fractions

associated with hypergeometric series to show in 1814 a way of choosing n nodes so

that the quadrature formula is exact for all polynomials of degree less than or equal

to 2n - 1.

Jacobi showed in 1826 that if the nodes tl,t2,'",to can be chosen so that the

node polynomial w,,, given by

= (t - t,)(t - - t.)

is orthogonal to all polynomials of degree less than or equal to k - 1, then the quadra-

ture rule has degree of exactness n - 1 + k. (A polynomial of degree -1 is taken to be

identically zero.) Since _:, cannot be orthogonal to itself, k < n, and the maximum

degree of exactness possible is 2n - 1.

It was not until the latter half of the nineteenth century that the work of Gauss

and Jacobi was extended to weighted integrals of the form

f .f(tlez,,( l=

The technique of Christoffel (1877) depended upon the generation of orthogonal poly-

nomials, and he showed that they satisfy a three-term recurrence relation.

In 1884, Stieltjes extended Gaussian quadrature to functions other than polyno-

mials. In particular, he established formulas for the class of functions uk(t) = t °_,

where 0 < al < c_2 < a3 < "" ", on the interval [0, 1].

The theory can be extended to a wide collection of classes of functions. In par-

ticular, quadrature formulas theoretically exist for any class of functions which forms

what is now called a Tchebycheff system. (Such a system will be defined in Chapter

6.) Tchebycheff studied these systems in the latter half of the nineteenth century,

and his work was extended by others, including M. G. Krein, S. Karlin, and L. S.

Shapley. A comprehensive presentation of Tchebycheff systems is given in [28].

The output function (1.1) is the sum of functions of the form

uj.k(t) = tj exp(;_kt), for nonnegative integers j and k. (1.2)

This class of functions forms a Tchebycheff system, and the method of computing

the polynomials ri(t) to be presented in this thesis will require quadrature formulas



for integrals of functions of the form (1.2). The definitions and properties of orthog-

onal functions, Gaussian quadrature, stability of matrices, observabihty, Tchebycheff

systems, and exponential interpolation will be discussed before discussing the appli-

cation of these ideas to the determination of the output function (1.1).



CHAPTER II

ORTHOGONAL FUNCTIONS

In many applications, a collection of orthogonal functions can be used to demon-

strate existence of solutions and to facilitate computations. Because of their impor-

tance in quadrature methods, a summary of some of their properties will be presented

in this chapter. For a more detailed discussion of most of what follows, see [9].

Definition 2.1 Let X be an inner product space with inner product of f and 9 de-

noted by (f,g). Two elements f,g E X ave said to be orthogonal if (f,g) = O. A

subset S of X is said to be an orthogonal set if for all f,g E S such that f _ g, f

and g ave orthogonal.

Definition 2.2 Let S be an orthogonal subset of an inner product space X. If

<f, f) = 1 for all f E S, then S is said to be orthonormal.

A closed bounded interval [a, b] and a real-valued function w determine an inner

product space defined as follows.

Definition 2.3 Let X = C[a, b]. Let w belong to X and w( x ) > 0 on [a, b]. For each

pair f, g E X, define

(f,g) = f_f(t)g(t)w(t)dt. (2.1)

Then (f,9) ezists for all f,9 E X and is called the inner product of f and 9 with

respect to the weight function w.

The space X defined above is an inner product space, and a set {_bk} of orthogonal

polynomials with respect to a positive weight function w can always be found, where

the degree of 4_k is equal to k. Inner product spaces also exist in case the interval of

integration is infinite if the set X is restricted to integrable functions.

One method of generating a set of orthonormal polynomials is the Gram-Schmidt

process. This process can be applied to any sequence of functions zl, x2,..., provided

the set {za,z2,...,zk} is linearly independent for each k. Assume :co(t) = 1 and

z_,(t) = tk for each positive integer k. Define

O0(t) = ;,,o(t)
(zo,zo)ll 2

5
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y,(t) = =,(t) - (=,,,/,o)¢o(t)
yl(t)

¢1(t)- (y,,y,),/2

k-I

y_(t) =
k=o

y,,(O
¢_(t) = (y,,,y,.)_.

=,,(t)- _ (=,,,¢,,_,)_,,__,

The set {¢0, ¢:,'", ¢k,'" '} is orthonormal. For each k, the degree of Ck is equal to

k, and the leading coefficient of ¢k is positive. The following conditions also hold.

1. For each Ck(t), there exist constants ao, al,-.., ak such that

Ck(t) = aOXO(t) + alXl(t ) "4-" "" + akxk(t).

2. For each zk, there exist constants bo, bl,..., bk such that

xk(t) = bo¢o(t) + bl¢l(t) +... + bj,dk(t).

This implies that Ck is orthogonal to every polynomial of degree less than k. Suppose

{¢k} and {z_} are collections of polynomials for which condition (1) above holds. If

{¢k} is an orthonormal set of polynomials with positive leading coefficients, then it

is precisely the set of polynomials which is generated from the collection {zk} by the

Gram-Schmidt process.

Real orthonormal polynomials satisfy a recursion relation, and the following theo-

rem provides a method of computing the polynomials if the constants in the recursion

relation can be calculated.

Theorem 2.1 Real orthonormal polynomials satisfy the following three term recur-

sion relation.

¢,,(t)= (,_,,t+ &)¢,,_,(t) - _,,¢.__(t)

The fol_lowing theorem gives a method of constructing an orthogonal set of monic

polynomials. In this method, constants Co,cl, c2,.., can be defined by

co = f:w(t)dt

c,_ = f:t"w(t)dt, n = 1,2,...,
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but the theorem is valid for more general sequences {c,,), provided

c0 cl --. _-i )

s,,=det cl c2 ".. Q _0 forn=l,2,...

C_-I _ •.. C2n_ 2

In general, let c° be the linear functional on the

(2.2)

space of real polynomials defined by

c'(t")=_, n=O, 1,2,....

An inner product on this space is defined by

(p,q) --c'(p(t)q(t)) (2.3)

Theorem 2.2 There ezists a unique sequence of monic polynomials which form an

orthogonal set with respect to the inner product [2.3]. The polynomials are given by

the following, where s_ is defined for n = 1,2,... by [2.2]:

I co cl ... c_

1 c_ c2 ... c,_+l
q,_ = m det .. •

3n

Cn-1 Cn • . . C2n_ 1

1 t --. t"

The sequence of polynomials {q,} determined in the above theorem satisfies the three

term recurrence relation

q-l(t) - 0, qo(t) - 1,

q,,+l(t) - (t - c_,_+,)q,,(t) - _3_ q_-l(t)

n = 0,1 9 ...

(2.4)

An algorithm for computing the constants a, and fl, is given in [19]. These polyno-

mials are called Lanczos polynomials of the first kind for {_}. Lanczos polynomials

of the second kind for {_}, denoted by {p,,}, are generated if the initial conditions

in [2.4] are altered as follows:

P-1 r_ 1, po(t) =0,

= (t - - (2.5)

n = 0,1,2,...



The following classical examples of real orthogonal polynomials are generated by

the inner product [2.1], where [a, b] = [-1, 1].

1. The weight function w(t) = 1 yields the Legendre polynomials.

2. The weight function (1 - t2) -1/2 produces Tschebysheff polynomials of the first

kind.

3. The weight function (1 -t2) 1/2 produces Tschebysheff polynomials of the second

kind.

4. Jacobi polynomials are produced by the weight function (1 -t)°(1 + t) 'z, where

and _ are constants greater than -1.

For some weight functions, the interval may be chosen to be infinite. For example,

1. generalized Laguerre polynomials result when the interval is [0, oc) and the

weight function is t°e -t, where a is a constant greater than -1, and

2. Hermite polynomials occur for an interval (-o0, o¢) and a weight function e-t2.

An important property of the zeros of real orthogonal polynomials with respect

to the inner product [2.1] is given in the following theorem.

Theorem 2.3 The zeros of real orthogonal polynomials are real, distinct, and are

located in the open interval (a, b).

The following definition of the kernel polynomial of an orthonormal system and the

Christoffel-Darboux theorem lead to an interlacing property of the zeros of consecutive

polynomials.

Definition 2.4 Let {¢,,} be a system of real orthonormal polynomials. The function

n

K,(t,s) = _. Ck(t)¢k(s)
k=0

is called the kernel polynomial of order n of the orthonormal system.



Theorem 2.4 (Christoffel-Darboux) Let {¢,} be a set of real orthonormal poly-

nomials, where

¢,_(t) = a,_nt n + a,_(,_l)t n-1 + ... + a,_o

for n = O, 1,2,.... Then

K.(t,s)

II

and
k=O

\a(.+1)(.+1) t-s

\a(n+l)(-+U

Using the Christoffel-Darboux theorem, the following can be proved.

Theorem 2.5 Let {¢,,} be a collection of orthogonal polynomials where, for n =

0,1,2,-.., the degree of ¢,, is equal to n. Let k be a positive integer. By theorem

[2.3], ¢k+1 has k + 1 real distinct zeros. If ._ and As are consecutive zeros of ¢_+1,

then Ck has a zero between ,_1 and _2.



CHAPTER III

GAUSSIAN QUADRATURE

The problem of approximating a definite integral has been studied extensively, and

many methods have been developed. The method of quadrature takes advantage of

the fact that the polynomials are dense in the set of all functions which are continuous

on a given interval. If the value of a function f is known at points tl,t2,... ,t, in

the interval of integration, a polynomial of degree n - 1 exists which agrees with

the function f at each of these points. Such a polynomial is called an interpolating

polynomial for f, and is said to interpolate f at the points tx, t2,'--, t,,. The integral of

this interpolating polynomial is then an approximation of the integral of the function

f.
The computation of the integral of an interpolating polynomial for the function f

at points tl, t2,'", t,, requires the determination of constants $1, A2,--., A,, as well as

the values f(t,),f(t2),.., f(t,,). The integral is then given by the quadrature formula

E_=x )_f(t_,). If two points t_ and t2 are used, the interpolating polynomial is linear,

and the quadrature formula is a special case of the trapezoidal rule. If three equally

spaced points are used, the quadrature formula is a special case of Simpson's rule.

An advantage of the quadrature method is that the quadrature formula is exact

for all functions which are polynomials of degree less than or equal to n - 1. If

some of the points tl, t2,..., t,, are not predetermined, they can be chosen so that the

quadrature formula will be exact for polynomials of higher degree.

In general, suppose ul,u2,...u,, are continuous real-valued functions defined on

a closed finite interval [a, b] containing the points tl, t2,. -., t,,,. Let A1. )_2," "', $,,, be

constants such that for each k = 1,_,9 ... , n,

f:u (t)dt =
j_.l

If the function f is a linear combination of the functions ul, u2,... ,un, then

f:f(t)dt = _ Ajf(tj).
j----1

, $,_ are called weights, and the points tl, t2,. "., t_ are calledThe constants )h, )_2, • • •

nodes. Necessary and sufficient conditions for the existence of such nodes and weights

10
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for a given set of functions, along with the number of nodes and weights required, are

given in [28] and will be discussed elsewhere in this paper.

Consider the particular case in which the functions to be integrated are poly-

nomials. If the nodes are pre-deterrnined, then n of them will be required for the

quadrature formula to be exact for all polynomials of degree less than or equal to

n - 1. If, however, all the nodes may be selected appropriately, then n nodes will give

a quadrature formula exact for all polynomials of degree less than or equal to 2n - 1.

Let n be a positive integer and _n-1 the set of all polynomials of degree less than

or equal to n- 1. Given n distinct points tl, t2,'" t,, in the interval [a, b] and n values

Yl,Yl,'", Y,,, there exists a unique polynomial p E 5'n_1 for which

p(tk) = yk k = l,2,...,n.

The polynomial p can be represented by the Lagrange formula as follows:

k=l

where for each k, ek is the Lagrange polynomial defined by

Then

(t- t,)(t - t_)... (t- t__,)(t - tk+,)... (t - t,) (3.1)
gk(t) = (tk - tl)(tk - t2)... (tk- tk-1)(tk -- tk+a)"" (tk -- t,,)"

f_p(t)dt = _ ,kkyk
k=l

Ak = fb_ek(t)dt.

where for each k = 1,2,.-.,n,

Since the scalar values Ak depend only upon the nodes tl, t2,..., t,,, then for each

polynomial in 5_n_1, the integral can be evaluated if the value of the polynomial is

known at each of these nodes.

Suppose the nodes tl,t2,..., t, in the above method are not pre-determined. It

was found by Gauss that they can be selected so that the quadrature formula is exact

for all polynomials in _P2,,-1. In order to determine such nodes, a set of orthogonal

polynomials is defined, and the nodes are roots of the polynomial of degree n.

By the theory of orthogonal polynomials, if {¢0, ¢2,'", ¢,} is a set of real orthog-

onal polynomials over the interval [a, b] such that for each k = 0, 1,-.., n, the degree
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of Ck is equal to k, then the roots of each Ck are real, distinct, and lie in the interval

(a, b). Further, if p is any polynomial of degree less than k, then Ck is orthogonal to

p. The following theorem validates the method of Gaussian quadrature.

Theorem 3.1 (Gauss-Jacobi) Let w be a positive weight function and {¢0, ¢2,'", ¢,,}

a set of orthogonal polynomials with respect to the inner product (Y2.3) such that for

each k = 0,1,.-.,n, the degree of Ck is equal to k. Let tl,t2,...,t,_ be the zeros of

¢,_, where a < tl < t2 < " • < t,, < b. There ezist positive constants _1, _2, "'" ,)_,,

such that f:p(t)w(t)dt = E_=, ,_kp(tk) whenever p E 92,,-1.

Proof: Let p belong to 5"2,,-x, and define q E 5',,_1 by

I1

q(t) = _':_p(tk)ek(t)
k=l

where gk(t) is the Lagrange polynomial (3.1). Since gk(t) satisfies

gk(tj) = 6_j = / 0 if k ¢ j
t 1 if k=j

then q(tk) = p(tk) for each k = 1,2,...,n. Therefore p(t) - q(t) belongs to 5"2,-1

and has zeros at tx, t2,... ,t,,. Since these are precisely the zeros of the nth degree

polynomial ¢,,, we have

p(t) - q(t) = ¢,,(t)r,,_l(t)

where rr,-X E 5",_-1. Since the degree of r,,-x is less than the degree of Cn, then ¢, is

orthogonal to r,,-x, and therefore

f:p(t)w(t)dt = f:[q(t) + ¢,_(t)r,_l(t)]w(t)dt

= f:q(t)w(t)dt

Define

k=l

n

k=l

$k = f_ek(t)w(t)dt. (3.2)
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Then n

y2p(t)w(t)dt= F_._,p(tk).
k=l

To see that each Ak is positive, note that (_k(t)) 2 E Y2,,-2, and therefore

(3.3)

n

f_(ej,(t))2w(t)dt = _ ,_i(ek(t,,)) 2-

Also, (ek(t)) 2 has zeros at t_,tz,.. ",tk-l,tk+l," .,t,,, and (e_,(tk)) z = 1. So

n

ak = _ a,(ek(ts))_
jml

= f_(tk(t))_w(t)dt > O.

Although (3.2) defines the weights in the Gauss formula (3.3), other methods exist

for their determination. For references, see Gautschi's survey [13].



CHAPTER IV

STABILITY

Let A be a nonsingular matrix in C _x_ and b an element of C ". Then the equation

Az = b has a unique solution for z, where z belongs to C". In general, the accuracy

of the solution x is affected by the accuracy of A and b. The problem is considered

to be stable, or well-conditioned if only small perturbations in the solution x result

from small perturbations in A and b.

In order to quantify the magnitude of a perturbation, it is convenient to define a

vector norm ][ [[. If x is the solution of Az = b, and z + y is an approximate solution,

a convenient measure of the magnitude of the error is the relative perturbation of x,

defined by Ilyll/llxll.

Suppose the matrix A and the vector b are perturbed by F and k respectively. If

z + y is the solution of the perturbed system, then

(A + F)(x + y) = b+ k.

An upper bound for the relative error depends not only on the magnitude of the

perturbation of A and b, but also on the matrix A. The following theorem will be

helpful in determining an upper bound. Details of the proof of this theorem and the

following results are given in [31].

Theorem 4.1 If IIIIdenotes any matrix norm .forwhich II111= Z, and if IIMII< 1,
then (I + M) -1 exists and

1
I1(I + M)-lll <

- 1 -IIMII

The following definition of the condition number of a matrix will be useful in

expressing an upper bound for the relative error.

Definition 4.1 Let A be a nonsingular matrix. The condition number of A with

respect to 11II, denoted C(A), is defined by

C(A) = IIAIIIIA-all

An upper bound for the relative error is given by the following theorem.

14
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Theorem 4.2 Let A and F belon 9 to C"x'_, and let z,y,b, and K belon 9 to C".

Assume that (A + F)(z + y) = b+ k. Assume also that [IA-1IIIIFll< 1 and IIIII-- 1.

Choose a vector norm which is compatible with the matriz norm. (That is, IIAzll <

Ilallllxll for all x in C" and all A in C"x".) Then the relative error satisfies

C(A) (_ IIFII_Ilyll/llzll _<1-(C(A)IIFII/IIAll) + IIm[I]

As expected, the relative error in a solution z of Az = b will be small if k and F

are "small" relative to b and A. But the condition number of A also determines the

upper bound. If C(A) is large, then it is possible that small perturbations in A and

b could result in a rather large relative error in the solution x. Since

C(A) = IIAIIIIA-111_IIA"A-'II- III11= 1,

then a well-conditioned system would have C(A) close to 1.

If there is no perturbation of the matrix A, the above upper bound for the relative

perturbation of x reduces to

In case the only perturbation is in the matrix A, then

Let A = (aij) belong to C "×'_ and define the matrix norm II IIx by

n

IIAII1= max,_j<. _ la,jI.
i=1

Consider an n x n complex matrix generated by the functions e alt, ea2t, ... , ex"t, where

)h, _2," "', _,_ are complex constants such that Re ,_l < Re _ < • .. < Re _,,. For real

numbers t! , t2,. • •, t,, satisfying 0 < tl < t2 < • .. < t,, < oc, define the matrix

En

e,_ltl e,\2tl ... eAntl )

e_lt? e,_2t2 . . . e,\nt2

,.o

e,_ltn eA2tn ... eA,t,
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It is shown in [32] that if En is nonsingular, then the condition number of E,, is greater

than or equal to n. If _l, _2,'",)_,, are real and distinct, E,, will be nonsingular for

any choice of (tl,t2,...,t,,) provided 0 < tl < t2 < "- < t,, < oc. Therefore, the

existence of a choice for (tl,t2,.",t=) which produces a matrix E,, with minimum

condition number is assured. The paper also produces upper and lower bounds for

C(E,_) for some special cases.



CHAPTER V

OBSERVABILITY

Let A be a constant matrix in C "x", c a constant vector in _", and I an interval.

Let x be a function from I to R". Consider the linear system

/'1/k Ax y cTx x(to) az= = = to E I (5.1)

art

The function y is called the output .function. In most of what follows, it will be

assumed that to = 0, since an appropriate translation of the variable transforms a

system into this form. It will also be assumed that I has the form [0, oc) or [0, b] for

a real number b > 0.

Let xx,x2 E R" be values for x(to) and the output functions Yl,Y2 solutions of

(5.1) corresponding to the initial values xl and x2 respectively. The system is said

to be observable when yx - y2 if and only if xl = x2. An observable system is said

to be discretely observable with respect to points tl, t2,..., t,_ in the interval I and

nonnegative integers sl, s2,'-., sm satisfying Ek_l sk = n if whenever y is a solution

of (5.1) satisfying

y(tl) = y(t2) = ... = y(t,,) = O and if m < n

= y"(tk) = ... = = 0 (5.2)

for each k where sk > 1

then y(t) -- 0 on I.

If the system (5.1) is observable, then the constant vector c has no zero compo-

nents. The solution for x is given by

x(t) = exp(At)x(O).

The n × n matrix exp(At) has the form exp(At) = (q;j(t)), where each q#(t) is given

17
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by
$

q,j(t)= F_,p,J (t)
k--1

where {)h,)_2,'", )_,} is the set of distinct eigenvalues of A, and each pij_ is a poly-

nomial of degree less than n. The output function y is given by

I%

y(t) = cTx(t) = cT exp(At)x(O) = __, b,i .q,j(t)
i,j=l

where each bij is a constant. Regrouping the terms gives y(t) = _=1 ri(t) e'x't, where

each ri is a polynomial of degree less than n.

The eigenvalues of the matrix A determine the form of the solution y, and it will

be assumed that A is in Jordan canonical form. This assumption leads to no loss of

generality since every matrix is similar to a matrix J in Jordan canonical form, and

the linearity of the dynamical system is preserved under a change of variables of the

form Z = Px, where A = p-1jp.

Suppose a set {t_}_' C 1 satisfies (5.2). Assume the eigenvalues of the matrix A

are distinct and that

m _.

An

In this case, the output function y is given by

TI

y(t) =
i=1

for constants bl, b2,-", b,_. Then y(t) - 0 if and only if bi = 0 for each i = 1,2,-.., n.

This will hold if an only if the system

/lell)/bl/e"_1t2 e "_t_ • • • e ;_'t_ b2

,•.

eAltn eA2tn " " " ea"t" bn
O)0

0
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has only the zero solution for the vector (bl, b2,.." ,bn) T. Therefore the system will

be discretely observable with respect to tl, t2,"-, t,, if and only if the matrix

E

e)tltl ex2tl ,,. e_ntl I

eAlt2 eA2t2 ... e._nt2

o**

e_ltn eA2tn . . . e_ntn

is nonsingular.

Suppose the eigenvalues A1, A2,.-', $. of A are all real. It is shown in [28] that

the determinant of E is positive provided A1 < _2 < "'" < A,, and t_ < t2 < -" t,,.

So, in this case, the system would be observable for any choice of n distinct points.

If some of the eigenvalues of A are not real, it is shown in [39] that the determinant

of E is nonzero if tl is chosen so that tl # 2rnTr/(Ak - A:) for all integers m and all

k #j, where 1 < k,j < n, and for tk = ktl, wherei = 2,-..,n. The thesis also

provides some examples of discretely observable systems in case A belongs to C2x2 or

C 3x3.

The question of discrete observability is related to an interpolation problem defined

as follows.

Definition 5.1 Let V be an n-dimensional linear space. Let L1, L2,'", L,, be given

linear functionals defined on V, and let wl, w2,'", w,_ be given constants. The set of

ordered pairs {(Lk, wk)}'_=ldefines an interpolation problem, lf x E V, and Lk(x) =

wk for each k = 1,.,9 ... , n, then z is said to be a solution of the interpolation problem.

Let V = {y [ y is an output function of the system (5.1)}. Then V is of dimension

n if and only if the system is observable. For a proof of this and the following theorem,

see [39].

Theorem 5.1 Let {tl,t_,...,t,_} be a set of discrete points in I, and define lin-

ear functionals L_,L2,'",L,_ by Lk(y) = y(tk). Then the interpolation problem

{(Lk,0)}_ l has a unique solution if and only if the system (5.1) is discretely ob-

serva-ble with respect to tl, t2, " ", t,,.

Consider a system with a nilpotent matrix A, where A" = O. In this case, the

output function y can be shown to be a polynomial of degree less than or equal to
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n - 1. The interpolation problem has a unique solution for any choice of points

tl, t2,---, t,. (See [8].) Therefore, the system is discretely observable with respect to

these points.

Another condition which is equivalent to discrete observability is given by the

following theorem in [8].

Theorem 5.2 Let V be an n-dimensional linear space and V" its dual space. Let

L1, L2,'", L,, be elements of V'. The interpolation problem defined by {(Lk, wk)}_=l

possesses a solution for arbitrary values wl,w2,"',w, if and only if the function-

als L1, L2,'",L, are linearly independent in V'. The solution to the interpolation

problem is unique.

Once it has been established that a system is discretely observable with respect

to a set of points tl,t2,..., t,, determination of the output function y can be made

in a number of ways depending upon the characteristics of the matrix A. The choice

of a method is influenced by the size of A and by its eigenvalues. For example, if the

matrix A belongs to _2×_ and the eigenvalues $, and $2 are real and distinct, then y

is given by

y(t) = ble ;_lt + b2e ;_2t.

Given any two nonnegative values tt and t:, with y(tl) = wl and y(t2) = w:, the

constants bl and b_ satisfy

e)qt_ e)_2t_ b 2 W 2

In this case, the inverse of the matrix

e,Xl t_ e,\2t2

can be easily computed and the coefficients bl and b: determined with accuracy. But

if the matrix E is large, computing the inverse is not practical. Also, as discussed in

Chapter IV, it might be poorly conditioned. In that case the accuracy of the solution

might be poor regardless of the method used to solve the above equation.

It is shown in [8] that if W = C[a, b] and t_, t_,.-., t, are distinct points in [a, b],

then the linear functionals L1,L:,... ,L_ defined by Lk(f) = f(tk) are independent
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in C[a, b]. It is also shown that if :_ is an n-dimensional linear space, then the dual

space r is also n-dimensional. These two theorems imply the following.

Theorem 5.3 Let V = {y I Y is an output function of the system (5.1)}, and let

tl, t2,..', t, be discrete points in [a, b]. Let L be any linear functional in V'. Define

L1,L2,"',L,, in V" by L_(y) = y(tk). Then there ezist constants bl,b2,".,b,, such

that

L(y) = blL_(y) + b2L2(y) +'" + b,L,(y)

= b_y(t_) + b2y(t2) +.." + b,,y(t,)

The above theorem suggests the applicability of quadrature methods when the linear

functional L is defined by

L(y) = f:y(t)dt.

This will be discussed further in Chapter VII.



CHAPTER VI

TCHEBYCHEFF SYSTEMS

In the method of Gaussian quadrature, orthogonal polynomials are used to deter-

mine nodes, tl,t2,'", t., and weights, A1, A2,-", A,,, such that

f:p(t)w(t)dt = E'_=lAkp(tk)w(tk)

for all polynomials p of degree less than or equal to 2n - 1. Theoretically, nodes and

weights exist which make

f_f(t)w(t)dt = E'_=lAkf(tk)w(tk)

for other collections of functions provided they satisfy certain conditions. In this

chapter an introduction to Tchebycheff systems will be presented, and it will be

shown that quadrature formulas are possible for functions which form such a system.

Definition 6.1 Let uo, ul,..., u,_ denote continuous real-valued functions defined on

a closed finite interval [a, b]. The collection of these functions will be called a Tcheby-

chef[ system over [a, hi, abbreviated T-system, provided the determinants

 (01 n)=to, tl, "", tn

u0(t0) u0(t,).., uo(t.)
 l(t0)

,.,,(to) ,,,,(t,)... u,,(t,)

(6.1)

are strictly positive whenever a < to < tl < .'. < t, < b. The collection of functions

Uo, ux,'", u,_ will be referred to as a complete Tchebycheff system, abbreviated CT-

system, if {uo, ul,'", u,} is a T-system for each r = 0, 1,..., n.

An example of a CT-system is the collection {ui}_ of functions defined by uo(t) =

1, and ui(t) = t i for i a positive integer. For any choice to, tl," ", 1,,, where to < 11 <

• .- < t,,, the determinant

1 1 ... 1

to, tx -.. t,_

, • •

t0 n tl n . . . tn n

u(O, 1, ..., n ) =to, tl, .--, 1,_

22
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is the Vandermonde determinant and has the value

II (t_- t,) > 0.
o<i<j_<,,

The following theorem guarantees that the set {exp(ait)}_ is a T-system on any

closed interval if each ai is real and ao < al < -'" < a,,.

Theorem 6.1 Let {z,}_ and {y_}_ be sets of real numbers where zo < zl <"" < z,,

and yo < yx < "'" < Y,_. Let

exp(xoYo)

E,_ = exp(xlyo)

exp(x,,yo)

The determinant of E,_ is positive.

Proof: Let u, be any function of the form
tl

exp(xoyl) "'" exp(xoy,.,)

exp(xlyl) .--exp(x,y,_)

...

exp(_,,y,) ... exp(_.y.)

u.(y) = E _,e_'_

(6.2)

(6.3)

i=0

where xi E I_ and ai E I_ for each i = 0, 1,...,n, x0 < Xl < -'" < xn, and E_'=oa_ 2 >

0.

It will be shown by induction that u,_(y) has at most n distinct real zeros. First,

let n = 0. For any real numbers a0 # 0 and zo, the function uo defined by uo = aoe *°_

has no zero. Suppose any function uk of the form (6.3) has at most k distinct real

zeros. Let xo,xl,'" ,xk+l and ao, al,... ,ak+l be real numbers with zk+_ > xk and

ak+l # 0. Define
k+l

Uk+l(y) = _ ai ez'y.

k=O

Suppose uk+l has k + 2 zeros. Then uk+l(y)exp(--zk+ly) has k + 2 zeros, and by
d

Rolle's theorem, _ [uk+_(y)exp(--zk+_y)] must have k + 1 zeros. But

k+l

ai exp[(x,- Xk+,)y]
i=0

ak+l -I- _ ai exp[(zi -- zk+l)y
i=0

_ d. uk+,(y)exp(--xk+,y) = d_

d

dy

= _ai(x,- xk+,)exp[(xi - xk+,)y],
i=0
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which has at most k distinct real zeros by assumption•

Next, induction can be used to show that det(E,_) y_ 0. Given real numbers Zo and

yo, define Eo = (exp(zoyo)). Then det(Eo) > 0. Suppose det(Ej,_i) _ 0 for all sets

of real numbers {S,}ok-1 and {t,}o k-l, where so < sl <... < sk-x and to < tl <'-" <

tk-_. Given sets {zi}o k and {y,}o k satisfying zo < zl <"- < xk and yo < y_ < "'" < yk,

suppose det(E_) = 0. Define uk by

uk(y) = det

I ezoy ° exoY2 . .. exoy_-1 ezoY Je_lYO ezlYl ... ezlYk--1 exlY

*°.

ezk_o ex_,Yl ... ex_y_,-i exkY

Then uk has k + 1 distinct real zeros Y0, Yl,"", yk. Expanding by the last column

gives u_,(y) k= _i=o ai e*_y. By assumption, each ai y_ O, so uj, can have at most k

distinct real zeros. Therefore, det(E_,) cannot be zero.

Now that we have det(E,,) y_ 0, induction can be used to show that it must be

positive. First, Eo > 0 for all real numbers x0 and yo. Next, suppose det(Ek-1) > 0

for all matrices of order k of the form (6.2) where xo < xl < "-" < xk-1 and yo <

Yl < "'" < Yk-1. Let xl, be a real number and xk > xj,-l. For any real number y, the

determinant

det(Ek(y)) =

exp(z0Yo) exp(zoyl)-.-exp(zoyk_l) exp(z0y)

exp(xly0) exp(xlyl).-, exp(zlyk-1) exp(xly)

• . .

exp(zkyo) exp(xj, yl).., exp(xkyk-l) exp(zky)

can be evaluated by expanding by minors of the last column to get

k

det(Ek(y)) = _ a, exp(ziy),
i=0

where the coefficient aj, is the determinant of a matrix of order k of the form (6.2)

and therefore positive by assumption. For all y > Yk-1, det(Ek(y)) -_ 0. So, on the

interval (y_-l, ec), either det(Ej,(y)) > 0 or det(Ek(y)) < 0. Suppose det(Ek(y)) < 0

on (y___, oc). Then

k-1

exp(-xky)det(E_,(y)) = a_ + __, aiexp[(xi- xk)y] < 0 for all y > y___.
i---0
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But this is impossible since

lim ak + _ aiexp[(zi -- zk)Y = ak > O
V--'co i=0

So det(Ek(y)) > 0 for all y > yk-1. 1:3

Other examples of T-systems can be constructed by noting that if {ui}_ is a

T-system on [a, hi, the following hold.

1. If the function r is continuous and positive on [a, b], then {rui}_ is a T-system

on [a,hi.

2. If the function r is continuous and increasing on [c, d] and the range of r is [a, hi,

then {uior}" d is a T-system on [c,d].

Since {expmt}_ is a T-system for c_0 < al < "'" < a,, and In t is continuous and

increasing, (2)implies that {t _' }_ is a T-system on any closed subinterval of (0, ec).

The next definition generalizes the concept of a polynomial.

Definition 6.2 Let {ui}_ be a set of real-valued functions defined on the interval

[a, b]. A function of the form u = __,'_=oaiUi, where each ai is veal, is called a u-

polynomial. A u-polynomial is said to be nontvivial if F_,i_o a, 2 > O.

Example. A Dirichlet polynomial E_=0 ai ec''t is a u-polynomial in the T-system

If {ui}'d is a T-system, the functions u0, ul,-", u,, are linearly independent, and

therefore any u-polynomial, u = Ei_0 aiui, is uniquely determined by the coefficient

vector (ao, al,'",a_,). Furthermore, a u-polynomial is determined by specifying its

values at n + 1 distinct points. In particular, any nontrivial u-polynomial has at most

n distinct zeros.

Definition 6.3 The number of distinct zeros on an interval [a,b] of a continuous

function f is denoted by Z(f).

Example. Let uo(t) = 1, and ui(t) = t _ for i = 1,.-.,n. As already mentioned,

{u_}_ is a T-system on an interval [a, b] and there exist real orthogonal polynomials

do, d:, "", d_ such that for i = 0,1,...,n, the degree of di is equal to i. For each i,

di has exactly i real distinct zeros, all in the interval (a, b). So Z(di) = i.
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We know that if {u_}_ is a T-system, then Z(u) < n for any u-polynomial. The

following theorem gives a sufficient condition for a set of functions to be a T-system,

which depends on knowledge of the zeros of all u-polynomials.

Theorem 6.2 lf {ui}3 is a T-system, then Z(u) < n for every nontrivialu-polynomial

u. Conversely, if a system {ui}'d of continuous functions on [a, b] satisfies Z(u) < n

for every nontrivial u-polynomial u, then {ui}_ is a T-system ezcept possibly for the

sign of one of the functions.

Proof- Let {ui}_ be a system of continuous functions on [a,b] and Z(u) < n for

any nontrivialu-polynomialu. Definethe functionP, where

P : [a, b]"+1 C N"+a _ N and

P(to,tl,. ..,t,) =

Then P is continuous on the region [a, hi"+1.

[a, b]"+1 such that P(to, tl,'"

uo(to) _,o(t,)... uo(t,_)
u,(to) u,(t,).., u,(t,,)

u.(to) u,,(t,).., u,,(t,,)

If there exists a vector (to, tl,..-, t,) T E

, t,,) = 0, then there would be a nonzero solution of

/u00,uol, )_,,(t0) u,(tx).., ux(t.) c,
* , .

u_(to) _,,,(t,)... u,,(t,,) c_

For this nonzero solution, define

=0

u(t) = _uo(t) + c,u,(t) +... + c,,u,,(t).

Then u is a u-polynomial with n+ 1 zeros, to, tl,--', t,,. Since Z(u) < n for every non-

trivial u-polynomial, P(to, tl,..., t,,) must be nonzero for every choice (to, tl,..', t,_) T E

[a, b]"+I. "By the intermediate value theorem, P(t0, t_,..., t,,) must have a fixed sign

in [a, b]"+1. []

Corollary 6.1 !f {u;}_ is a CT-system, then for each k = 0, 1....,n, Z(u) < k,

whenever u = _=oaiui, each ai is real, and v,k a 2z...i=o i > O.
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An important property of a polynomial is the multiplicity of each of its zeros.

If the multiplicity of a real zero is even, then the polynomial does not change signs

at that point. The following definition categorizes the zeros of continuous functions

according to whether or not the function changes signs at that zero.

Definition 6.4For any continuous function f on [a, hi, an isolated zero to E (a, b)

of f is called a nonnodal zero provided f does not change sign at to. All other zeros

including zeros at the end points a and b are called nodal zeros.

Definition 6.5 The number of zeros on [a, b] of a continuous function f, where nodal

zeros are counted once and nonnodal zeros twice, is denoted by Z(f).

Theorem 6.3 /f {ui}'_ is a T-system, then Z(u) < n for every nontrivial u-polynomial

u. Conversely, if {ui)_ is a system of continuous functions on [a,b], and Z(u) < n

for every nontriviaI u-polynomial u, then {ui}'_ is a T-system ezcept possibly for the

sign of one of the functions.

Proof: The second part of the theorem follows from Theorem (6.2) since Z(u) <

_#(u). To prove the first part, assume Z(u) > n + 1 for some nontrivial u-polynomial

u. If u has no nonnodal zero, then Z(u) = Z(u), and Theorem (6.2) would be

contradicted.

Assume u has at least one nonnodal zero. Let tl, t2,"-, t_ be distinct real zeros

ofu with tl < t2 < -.. < tk. For each nonnodal zero t;, choose ei > 0 so that if

i :_ k, then ti < ti+ei < ti+x, and ifi = k, then tt < t,+ei < b. If tj is the

first nonnodal zero (i.e., tj < ti for all nonnodal zeros ti), then choose ej > 0 so

that ifj _ 1, then tj-1 < tj-e_, and ifj = 1, then a < tj-e i. Define the set

S = {sis is a zero of u, or s = ti -b ei for a nonnodal zero ti of u}. This set is finite

and contains at least n + 2 elements. Label the elements of S = {so, sl,... ,SM} so

that si < sk whenever i < k. Consider the points so, sl,.", s,,+l. Then u(si) > 0 for

i odd and u(si) < 0 for i even, or vice-versa. Also,

u(s0) U( l)
 0(s0)

•..
•..
. . .

•..

=0
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because the first row is a linear combination of the following rows. If the above

determinant is expanded by the first row, we have

n+l

aiu(si) = O.
i=0

Since {ui}_ is a T-system, each minor is positive, and therefore the ai alternate in

sign, as do the u(si). Either aiu(si) >_ 0 for all i or aiu(si) <_ 0 for all i, so aiu(s,)

must be zero for all i. Since each ai # 0, si must be a zero of u for i = 0, 1,-.-, n + 1.

But by theorem (6.2), Z(u) < n, so the assumption that Z(u) > n + 1 is false, o

In the proofs of some of the following theorems, the existence of a nonnegative

u-polynomial which vanishes only at prescribed points will be assumed. The following

theorem due to Krein guarantees the existence of such a function. Before stating the

theorem, the following definition of a weight will be needed.

Definition 6.6 Let T = {tx,... ,tk} be an increasing set of distinct points in [a,b].

To each ti E T a weight w(ti) is defined by

i"

= 2
t 1

ti E (a,b)

ti = a orb

Theorem 6.4 (Krein) If {ul}_ is a T-system on [a,b] and k_,=lw(t,) <_ n, then

there ezists a nontrivial, nonnegative u-polynomial u vanishing precisely at the points

ofT = {tl,'..,tk}. The only ezception is that if n is even, and ezactly one of the

end points a or b is in T then u(t) may vanish at the other end point as well.

Proof: First let n = 2m + 1 for m a positive integer. Suppose a < tl < t2 < ... <

tk < b. Select points t_',t2',...,t,__k' so that tk < t_' < t_' < ... < tm-k' < b. Let

the set {si}_ m+l consist of the points

a, tl, tl + e, t_, t2 + e, ---, tk, tk + e, tl', tl' + e, ..., t,,,_k', tm-k' + e (6.4)

where e :> 0 is chosen so that the above sequence is increasing and contained in [a, hi.

Define the polynomial

0, 1, ... 2m, 2m+l

\

u,(t) = u
]Sl_ S2_ "'', S2m+l _ t
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(6.5)

u0(_l)

u_.,+,(s,)

•-. _o(s_,.+,) uo(t)

•.. uz._+,(_2..+,) u2._+l(t)

Since {u,}_ is a T-system, u,(t) vanishes precisely on the set {s,}_ ''+1, and each zero

is nodal. In particular,

u,(t)>O if s2i-x<t<s2i (i=l,2,...,m)

or s2_+1 < t < b.

Expanding (6.5) by the last column gives

u,(t) = _ a,(,)u,(t)
i=O

where K(e) = Z_'=o[ai(e)] 2 is positive. Define the function

n

a,(_),,,(t)
v(_,t) - _=o

12

= Y_ bi(e)ui(t), where bi(t) =
i=0

a;(_)

n b e :Then _i=o[ ,( )] = 1 for each positive e suitably close to zero.

Select a sequence {ey} of small positive numbers so that ej ---. 0. Since Ib,(ej)[ < 1

for i = 0, 1,.--n and j a positive integer, then there exists a subsequence {eJk} such

that {b_(ej_)) converges for each i = 0,1,...,n. Let ao, al,...,a,_ be limits of the

subsequences, where

and define

{b,(_j,)}--, a,

n

i=O

Then '_ = ., ,E,=oa_: 1, and fi vanishes at the points a, tx,t:,., tk, tl ',t2 _,...,tm_k. All

points except a are nonnodal zeros, so 2(5) _> 2m + 1. By theorem (6.3), 2(fi) _<

2m + 1, so these are all the zeros of 5.
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Next, construct in a similar manner a nonnegative u-polynomial u* that vanishes

precisely at points tl, t2, ..', tk, t_', t_, .-., t",,_ k, b, where the points in {t_}_ -_

1_o _ rn-k S _ool rn-kare chosen so that l"isl N l-j J1 = O. Then the u-polynomial U(t) = fi(t)+u'(t)

is nonnegative and vanishes precisely at points tl,'--, t_,.

In case {tl,..-,tk} is such that either tl = a or tk = b, but not both, then

the desired u-polynomial can be constructed in a manner similar to the above. If
I

' satisfying tk-_ < tj < tk fortl = a and tk = b, select points t_,t[,...,tm_k+ 1

j = 1,..-,m - k + 1. As before, choose e > 0 small enough that the sequence

{ s,(e) } _,,,+1, consisting of points

I I !
a, tl + e, t_, t2 + e, ..., tk-1, tk-z + e, t'_, t 1 + e, ... tin_k+ _, t=_k+_ + e, b,

is increasing. Define u_(t) as before in (6.5). Letting c _ 0 as above, a nonnegative
I

polynomial fi is determined which vanishes at the points tl,''-, tk-1, t_,..., tin_k+ 1, tk.

Since tl = a and tk = b, 2(fi) = 2m. Since, Z(fi) < 2m ÷ 1 by Theorem 6.3, fi cannot

vanish elsewhere.

Next construct as before a nonnegative u-polynomial u" which vanishes precisely

at the points t,,...,tk_l,t'l','",t__k+l,tk, where {t_}_ '-k+l N {t_}_ '-_'+' = 0. Then

u(t) = fi(t) + u'(t) is a nonnegative u-polynomial which vanishes precisely at the

points tl,--', tk.

In case n is even, an argument similar to the above produces a nonnegative u-

polynomial u vanishing at precisely the points T = {tl,--', tk} unless exactly one of

the end points is in T. In that case the proof leaves open the possibility that u might

also vanish at the other end point as well. D

Theorem 6.5 Let (u_}; be a T-system. Let T = {t_,t2,...,tk} be a set of points

in [a,b], and let _ : T _ {1,2} be such that w(t_) = 1 if ti = a or ti = b. Suppose
k

_=lw(ti) _ n. Then there ezists a u-polynomialu such that u(t) y_ O fort E (a,b)-T

and such that ti is a nodal zero if w(ti) = 1 and a nonnodal zero if _,,'(ti) - 2. I.f n is

odd, the polynomial vanishes precisely on the set T.

In attempting to extend the method of Gaussian quadrature to functions other

than polynomials, it will be helpful to define the moment space of a T-system. Its

characterization depends upon a theorem of Carath_odory, the proof of which depends

on the following theorem. (See [40].)
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Theorem 6.6 Let A C 11". The convez hull of A is the set of all finite convez

combinations of elements of A. (,4 convez combination of points ul, u2,'--, up in A

is a linear combination of the form P -,_"_-i=1 tiui, where ti > 0 for all i = 1,9 ... ,p, and

P _.E=I 1.)

Proof: Let B be the set of all convex combinations of elements of A. Denote the

convex hull of A by C(A). Since C(A) is a convex set containing A, it contains all

finite convex combinations of elements of A. So B C C(A).

Suppose z and y are elements of B. Then z and y have representations of the

form

z = _ Aixi and y = _ t.tiYi
i=1 i=1

where Ai > 0 for all i = 1,-.-,n, /_i > 0 for all i = 1,...,m, _=1 Ai = 1, and

E_'=I/_, = 1. Let t E [0,1]. Then (1- t) E [0,1] and

gt_

tx + (i - t)y = _'_(tAi)x, + E[(I - t)#,ly,
i=1 i=1

is a convex combination of elements of A. So B is a convex set, and B contains A.

This gives C(A) C B and therefore C(A) = B. []

The proof of Carath6odory's theorem is given in [40], and it refers to the following

theorem which is easily verified and therefore stated without proof.

Theorem 6.7 Let xl,...,xp be points in V, u,here V is a linear space over _. The

following statements are equivalent:

I. For any j, the vectors xi - xj, i _ j, are linearly independent.

2. [f al,...,ap are real numbers such that

P P

= 0 Z ,=0
i=1 i=1

then vq = a2 = ... = % = O.

Theorem 6.8 (Carath6odory) Every point belonging to the convez hull of a given

set A in _" can be represented as a convez combination involving at most n + 1 points

of A.
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Proof: Let z belong to the convex hull of A. Then by Theorem 6.6, there exist

zl,-..,zp E A and A1,'.-,A t, E R such that A, _ 0 for i = 1,...,p, E,_I A, = 1, and

x -- Z Aixi.
i=1

Suppose there exist pl,'",pp _. R, not all zero, such that

P P

ttizi = 0 and _/_i = O.
i=1 i=1

Then for every p E 1¢,

P P P

i=1 i=1 i=1

(6.6)

Define the set

S= {aelR l agi<Ai for l<i<p}.

Then S is a closed interval of the form [a, fl], as the following argument shows. For

each i such that p_ # 0, a must be in the interval [A_/#_, c¢) if p; < 0 or (-o0,)_,//J,]

if pi > 0. Denote the appropriate interval by Ii. Then a belongs to the intersection

of all the intervals Ii which correspond to pi # 0. Since the #, are not all zero and

P
_i=1 gi = 0, there exist integers m and n in {1,.--,p} such that #,,, < 0 and p,_ > 0.

So the intersection is a closed bounded interval [a, _], where a = A_/t.t.7 and _ = Ak/I.t_,

for some j and k in {1,...,p}.

Substituting a for p in the above representation (6.6) for x gives

= -
i=1

where (Ai api) > 0 for i 1, ,p, and P A - =- - = "'" Z,=x( i api) 1. Since a = A_/_zj,

then Aj - apj = 0. Thus x is a convex combination of p - 1 points of A. Rename

these p-1 points xl,...,zp_l. If there exist g,,--.,_tp_l E _, not all zero, such that
p-1 p-1

_,=z #ixi = 0 and _i=x P; = 0, then the above process can be repeated to produce

a representation of z as a convex combination of p - 2 points of A. Continuing this

will eventually produce a representation of x as a convex combination of q points

of A, where q < n + 1. To see this, suppose there exists a representation of x

as a convex combination of q points xl,--.,xq for q > n + 1. Suppose also that
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• _=I/Jixi = 0 and qwhenever #I,'" ,_q are real numbers such that q = 0, then

_1 - /_2 = "'" - /_q -- 0. Then for any j, the set of q- 1 vectors x_-x i, for

i _ j is linearly independent. But q - 1 > n, contradicting the fact that any linearly

independent set in ]l" contains at most n vectors, n

Before defining the moment space, it will be useful to state the following definition

and theorems due to E. Helly. Proofs of the theorems are given in [24].

Definition 6.7 A set .T of functions is said to be uniformly of bounded variation on

[a,b] if there ezists a constant M such that V(f) = f_ Idfl <_M for all f E Y.

Theorem 6.9 (Helly's Selection Principle) Let {O,,,n} be a double sequence of

real numbers which is bounded by A; i.e.,

IO ,nl< A for all m,n.

Then there ezists a subsequence {nk} and a sequence {0m} of real numbers such that

for every positive integer m,

lim #,_,n_ = 0,_

Theorem 6.10 (Helly) If {an} is a sequence of functions, uniformly of bounded

variation on [a, b] such that a,_(a) is bounded for all n, then there ezists a subsequence

{ank } and a function a of bounded variation such that limk__ _rnk (X ) = a( x ) for all

z in [a, b].

Definition 6.8 Let {ui}_ be a T-system on the interval [a,b]. The moment space

A4n+l with respect to {ui}_ is defined to be the set

.M,+I - - u (t)

and a is a nondecreasin9 function of bounded variation

which is right continuous on (a, b)}.

Theorem 6.11 The moment space fl4,,+1 is a closed convez cone.

Proof: If A is a positive real number and c is an element of J_n+l, then Xc also

belongs to .h,4,+i. So A4,+1 is a cone. Also, for any cl and c2 in .M,_+l, tcl +(1 --t)c:

belongs to .h,4n+l for all t satisfyng 0 < t < 1. So .A4,_+1 is convex.
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To show that A4,,+1 is closed, let u(t) = E'_=oaiui(t) denote a strictly posi-

tive u-polynomial. The existence of such a polynomial can be demonstrated us-

ing Theorem 6.4. (To construct one, find two nonnegative u-polynomials that have

no common zeros. Then their sum is a strictly positive u-polynomial.) Let c =

(co,--., _) E E "+1 and {c(')} a sequence in A4,,+_ with lim__oo c (') = c. For each r,

c I_) = (c_ "), c_'), .-. , c_)), where

c(,) f,b, = _,,(t)da,(t),

and cr_ is a nondecreasing function of bounded variation which is right continuous on

(a,b). For convenience, a, can be chosen so that a'(a) = 0 since f_ f da = f_ f d(a +

K) for every function a of bounded variation and every constant K. Since {c I') } is

convergent, the sequence {Ei=0 (')_n aici I is bounded. So for some constant M,

M > _Y'_aic!') = [bu(t)da,(t)> (min u(r)'_
i=0 Ja _ \a<_r<b /

where min_<_<b u(r) > 0. Since a_ is nondecreasing, the variation of a_ on [a, b] is
m

f_da_(t). Therefore, the sequence {a_} is uniformly of bounded variation on [a,b].

By Helly's theorem, there exists a subsequence {a_k} and a function cr of bounded

variation such that limk_ooa_(t) = a(t) for every t in [a,b]. Then for each i =

0, 1,..., n, the continuity of ui on [a, b] implies

ci = lim f_u,(t)da,k(t ) = f_ui(t)da(t).
k---*¢¢

For a proof of this equality, see [24] or [38]. Since each a_ k is nondecreasing, and

a, k ---* o', then o" is also nondecreasing. Since a is of bounded variation on [a, b], it has

at most a countable number of discontinuities, limt-x- or(t) exists for each x E (a, b],

and limt__:+ a(t) exists for each x E [a,b). (For verification of this, see [38].) Define

the function a0 by ao(a) = a(a), ao(b) = a(b), and ao(x) = limt_,+ a(t) for all t in

(a,b). Then a = ao almost everywhere in [a,b], and a0 is right continuous on (a,b)

and nondecreasing on [a, b]. So a0 belongs to ._,,+1, and

c, = f:u,do =

for each i = O, 1,---, n. Therefore c E .M,+I.

Another characterization of M,,+l results from the following definition.

D
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Definition 6.9 Let {U,}o be a T-system on [a, b] and C,,+1 the curve in E "+_ defined

by

C,+, - {-r(t) = (uo(t),u,(t),...,u,(t)) l a < t < b}.

Let C(C,+I) denote the smallest convez cone containin 9 C,,+1.

Theorem 6.12 C(C,_+I) /s closed and every 7 = (7o,'",7,,) E C(C,,+I) can be rep-

resented in the form
n+2

"r,= i = (6.7)
j=l

where for each j = 1,---,n + 2, Ai > 0, and a <_ ti < b.

Proof: Clearly, all vectors of the form (6.7) belong to C(Cn+_). Since C(C,+I)

is convex, it must contain the convex hull of C,,+_. In fact, C(C,,+_) = {k3 I k >

0 and/3 belongs to the convex hull of C,+1}. Let 3' E C(C,,+I). Then 7 = kfl for

some k > 0 and/3 in the convex hull of C,,+1. By the theorem of Carath_odory,/3 can

be represented in the form/3i = v'"+2 ajui(tj) where a i > 0 and a < t: < b. Then 3'Z..-,j= 1 , -- -- --

V',_+2 kot.iui(tj), where ka i > O.has the representation 7i - z-.:=l

To show that C(C,,+1) is closed, suppose lim,--.oo 7 (') = 7, where 3'(`) E C(C,_+I)

for every r. If 7 (`) = (7('), ... , 7(_")) and 3' = (%,'", "Y,), then for each i = O, 1,-.-, n,

n+2
3,(_) _(,) ,A,) _ (_)

i -- _ )and lirnAi ui(_: 7i
j=l

"- 7i,

{') < b. As seen before, there exists a strictly_(_) > 0 and a < t: _where for every r, ..: _ _

positive u-polynomial u(t) = Ei"=oaiu_(t). Since {7 t_)} is convergent, there exists M,

such that for every positive integer r,

M
rl

x---, a (,)> 2., i'yi
i=0

- Za' -,') ,.,',,
-- a i uii_j )Ji=0 \i----1

j----I i----O

n+2

> Z ;" (mio
-- "'2 \a_<r_<b

j=l
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So {A_ ") } is uniformly bounded by M. Since each ui is continuous on [a, b], {lui(t_'))[}

is uniformly bounded.

For each positive integer r, consider the finite sequence

•.., uo(t,,+2),

•..

, ..., u,,(t,,+=)}.

Then {IO,,,,,l}is uniformly bounded, and Helly's selection principle guarantees the

existence of a subsequence {rk} and sequences {Aj} and {u,j} such that

_(rk) Aj j= 1,...,n+9 and

limui(t_ r*)) = uq i =O,...,n and j = l,...,n + 2.
k--*oo

Since )_('*) > 0 for all j and rj,, then Aj > O. Since each ui is continuous on a closed

interval, the range is closed, and therefore uij is in the range of u_. So for each i and

j, there exists at least one ty E [a, b] such that

lim ui(tj ) = ui(t_).

This gives 7 = lim,__ 7 (*) = (%,..-, 7-) where for each i,

.+2

"ri = lim 7! r*} = _ Ajui(ty).
k--*_

j=l

So 7 E C(C_+x), and C(C,,+1) is closed. D

In the proofs of some of the following theorems, some properties of hyperplanes

will be useful. For convenience, the related definitions and theorems will be stated

here. Proofs can be found in [40].

Definition 6.10 A hyperplane H in E" is determined by a nonzero linear functional

• .. " for real constants al, ,f : E '_ ---, IR, where f(zl, ,z,) = F-,_=l aixi ... a,, and a real

constant d. H is defined by

H = {v E E'_lf(v) = d} = f-'(d).
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Let A, B C E". Then H is said to separate A and B if either f(A) < d and f(B) > d,

or f(A) > d and f(B) < d. H is said to separate A and B strictly /f either f(A) < d

and f(B) > d or f(A) > d and f(B) < d.

Definition 6.11 Let V C E '_ and c an element of the boundary of V. A hyperplane

H = f-l(d) in E '_ is said to be a supporting hyperplanefor V at c ifc E H and either

f(V) >_ d or f(V) < d. a supporting hyperplane n for V is said to be non-trivial if

V is not contained in H.

Theorem 6.13 Let V be a convex subset of E" and c an element of the boundary of

V. Then there exists a non-trivial supporting hyperplane for V at c.

Theorem 6.14 Let V C E" be closed, convex, and non-empty. Let c E E '_ and

c _. V. Then there exists a hyperplane in E" separating V and c strictly.

With these theorems, it can now be shown that .A,4,,+l and C(C,,+I) are identical.

Theorem 6.15 .M,_+I= C(C_,+I) = the convex conical hull of C,,+1.

Proof: If 7 E C(Cn+,), then 7 = (7o,"',7_) can be represented in the form (6.7).

So for a given integer i, 7i is given by

n+2

j=l

where tx < t2 < "" < t,,+z, a < tj < b, and ,_j > 0. There exists a nondecreasing

step function (r which is right continuous on (a, b) and has its only points of increase

at the points tj and for which

n+2

__, Aju,(tj) = f:u,(t)da(t).
j----1

So 7 E fl4,+1.

Next, suppose co = (c_°, ... ,c,_ °) E .A4,,+_ but co ¢ C(C,,+I). Since C(Cn+_) is a

closed convex cone, Theorem 6.14 guarantees the existence of a hyperplane strictly

separating co from C(C,+I). So there exist real constants ao,-.., a,_, not all zero, and

a real constant d such that
n

a: ° + d < 0,
i=O
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and for every "_ = (%,---,'r,) • C(C_+I),

n

ai3'_ + d > 0.
i=O

For each nonnegative A, (Auo(t),...,Au,,(t)) • C(C,,+_) for all t • [a,b]. Therefore

a,_u,(t) + d > o. (6.s)
i=O

Since co E A4,_+1, there exists a nondecreasing function _r° which is right continuous

on (a, b) and satisfies

0 > Ea, c°+d
i=O

n

= Z a'f:u'(t)d_°(t) + d
i=0

= /_ ,_,_(t) d_°(t) + d.

(6.9)

Denote f_da°(t) by A. Since co ¢ C(C,+_), co # (0,-..,0). So A > 0, and integrating

(6.8) with respect to a ° gives

< f: a,A_,,(t)+ d d_°(t)

= f: a,Au,(t) da°(t)+ f:dda°(t)

= Af_ a,_,,(t) do°(t) + _d.

Dividing by A gives

o < £ a,u,(t) do°(t) + d.

This contradicts (6.9), so co • C(C,_+I), and M,_+I = C(C,_+1 ). []

Definition 6.12 The index I(c) of a point c in M,_+I is defined to be the minimal

number of points of C,_+1 that can be used in a convex representation of c under

the special convention that (uo(a),ul(a),...,u,_(a)) and (uo(b),ul(b),...,u,_(b)) are

counted as half points while (uo(t),ul(t),... ,un(t)) receives a full count for a < t < b.
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Theorem 6.16 A vectorc ° E .&4,,+1, c° _ O, is a boundary point of;t4,,+1 if and only

if I(c °) < (n+l)/2. Moreover, every boundary point co admits a unique representation

p

° = aiu (t ), i = 0,1,.--,n
j=l

where p < "2-"-:12:3-,Aj > 0, j = 1,2,...,p, and tl < t2 < "" < tr,.

Proof: First, we let co # 0 be a boundary point of .M,_+I and show that I(co) <

Since .Ad,+x is closed, co E A4,,+1, and by Theorem 6.13, there exists a support-2 "

ing hyperplane to .M,+1 at c°. That is, there exist real constants ao,'-', an, not all

zero, and a real constant d for which

l't

_ aici + d > O for all c = (co,...,c=) E M,+_ (6.11)
i=0

l't

and __, aici ° + d = 0 for co = (CoO,..., c,_°) (6.12)
i=O

Since (0,-..,0) E .M,,+_, (6.11) gives d > 0. Suppose d > 0. Then (6.12) implies

E_'=o aici ° < 0. So there exists a positive real number $ such that

)_( fi aici°)i=o +d<0. (6.13)

But ,\c ° E .M,,+I for each positive real number A, so by (6.11),

_'_in=Oai(/_c_ O) + d > 0

or A (_"_in=0 aici O) + d > 0

This contradicts (6.13), so d = 0, and we have

_"_-n=0 aici _ 0 for all c ff M,_+1, and

(6.14)

_-_=0 aici 0 = O.

Define the function u° by u°(t) = Z_=0 aiui(t). For each t E [a,b], (uo(t),..., u,(t)) E

.Ad,_+l_ To see this, choose the step function o't which is right-continuous and has its

only point of increase at t of magnitude 1. Then for each i,

u,(t) =



40

So u°(t) > 0 by (6.14). Since co E .M,+I, there exists a function a ° such that

c, ° = ffui(t)da°(t) for each i. Then fb, uO(t)da°(t) = 0. Since u°(t) >_ 0 for all

t E [a, b] and a ° is nondecreasing, then u ° vanishes at every point of increase of a °.

So a ° can only have a point of increase at a zero of u °. By Theorem 6.2, the number

of zeros of u ° is less than or equal to n, and they will be denoted by tl,t2,''',tk,

where k < n. Then for some positive constants A1,'", Ak,

f:u,(t)d_°(t) = r, _u,(tj)
5=1

for each i. So co has the representation

k

co = _ _j(uo(tj),..., _,(tj)).
j---1

Since u°(t) >_ 0 on [a,b], all zeros except a and b are nonnodal. So 2I(c) _< Z(u°).

(See Definition 6.5.) By Theorem 6.3, Z(u °) _< n, so I(c) < _2

To show that the representation (6.10) is unique, let T = {rj}_ be a set of distinct

points in [a, b] containing all the zeros of u°(t). If co has a representation of the form

(6.10), then there exists a function a 1 such that co = (f_uo(t)do'l(t), ''" , u,,(t)dal(t)),

and the points of increase of a 1 are zeros of u°(t). The system

coo = Zo_o(_o)+ ... + Z,=o(_.)

c,° = _ou,(_o)+... + _u,(_)

has a unique solution for _o,'", _ since the determinant of coefficients is nonzero.

,+1 Then co (co o, - cn °)Now let co denote a vector of A4,+1 for which I(c °) < -'i'-" = "" '

has the representation ci ° _=1 -_jui(ti) where P= , Zj=_ a.,(t3) = 2I(c °) < n + 1. (See

Definition 6.6.) Then P_j=l w(ti) <- n and, by Theorem 6.4, there exists a nontrivial,

nonnegative u-polynomial u°(t) = E'_=o a_u,(t) for which u°(tj) = 0 for each t_. If

c = (co,..., c,_) E C(C,_+:), then by Theorem 6.12, c has the representation

= S_o(_),..., E s_(_)
\j=l
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where each 6j >_ O. Then

aoco + "-" + a,_

Also,

n+2 n+2

= ao_ 6juo(,,)+-.. + a. _ _ju,(_)
j=l ./=1

= 61(aouo(_'_)+-.-+ a.u.(,ll) +.-. +

_,+_(aoUo(_'.+_)+.-" + a.u.(_',+_))_>0.

P P

,ocoO+... + a._o = ,o ]E _,_o(ts)+... + a, Z Xj_,(tj)
j----1 j----I

= _l[ao_,o(t_)+..-+ a,u,(tl)] +-.. +

_plao_o(t_)+--" + a._,.(t,)l = 0.

So the points satisfying aoco +.-. + a,,c,, = 0 form the supporting hyperplane to ._d,_+l

at c°. Therefore, co is on the boundary of .M_,+l. []

Before looking at interior points of J_4,_+i, it is helpful to define a section of M,,+l.

Definition 6.13 A section of :M,,+_ is any subset S of ./M,,+I with the following

properties:

I. S is contained in a hyperplane.

_. If co E .hd,+l and co ¢ O, then there ezists a unique positive real number A such

that Ac° E S.

Theorem 6.17 S is a section in _4_+x

ao_ • . .

and

if and only if there exist real constants

,a,, and a positive constant o_ such that u(t) = _=oaiui(t) > 0 for all t E [a,b],

11,

s = ((co,... ,c.) e M.+, I _ a,c, = _} (6.15)
i=0

Proof: First, suppose S = { (Co,..., c,,) E .all,+, ] _i_=o aici = a}, where _=o aiui(t) >

0 for all t E [a, hi, and a > 0. Let c E S. Then clearly c belongs to the hyperplane

defined by _i_o aixi = a.

Let c --- (co,..-, cn) E .M,,+z and c ¢ 0. By theorem (6.8) c has the representation

c = _j_o(t_),--., _ju,(t_
\j=l =
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whereAj>0anda<tj<bforj=l,...,n+2. So

i=0 i=0 j-" 1

j=l i--O

Since u(t) > 0 for all t E [a, b], E_'=o aiui(tj) > 0. Since c ¢ 0, we have ,_j # 0 for

some j and therefore _'=o aiq > 0. So there exists a unique positive constant ,_ such

that _=o ai()_ci) = or, and ,_c E S. This shows that S is a section.

Now suppose S is a section in M,+I. Then S lies in a hyperplane defined by

_=o aizi or, where cr > 0 and v',_ a.2= - z...i=o , > 0. The following argument shows that

cr > 0. Suppose cr = 0, and let c E ;91,+1. Then there exists a positive real number A

such that Ac E S. If c = (Co,'-., c,_), then _i"=o aiAci = 0 and therefore _=o aici = O.

For every t E [a, b], (uo(t),..-,u,_(t)) E A'/,_+x and thus _'_=oaiu_(t) = 0 on [a,b]. By

Theorem 6.2, the number of distinct zeros of a non-trivial u-polynomial is less than

or equal to n. So _=0 ai 2 = 0, which contradicts the hypothesis that _i"=o ai 2 > 0.

So a > 0. For any t E [a,b], there exists A > 0 such that A(u0(t),-..,u,,(t)) _. S.

Since S hes in the hyperplane defined by _=0 aizi = a, we have _'=o aiAui(t) = a

and thus _=o a_ui(t) > 0. Let c = (Co,..., c,,) be any element of .M,+I for which

_=oaici = a. Since S is a section, there exists A E _ such that Ac E S. Then

_,_o aiAc_ = a and therefore A = 1. So c E S, and

((Co,... ,c,) e I
i=0

Therefore S = {(Co,-.. ,c,,) E M,+, ] Z'_=oa,ci = _). []

Theorem 6.18 Let S be a section in A4,,+1. Then S is convez and bounded.

Proof: If S is a section in .A4,,+1, then by the previous theorem, there exist

real constants ao,...,an such that u(t) = _oa_u,(t) > 0 for all t E [a,b], and

S = {(co,..-,c,,) E A/l,+, I E_'=oa,c, = a} for a > O. Since u(t) > 0 on [a,b],

mino<t<bu(t) = M for some positive number M. Let c = (Co,..-,cn) E S. Then

c E .A4,+1, and there exists a right continuous nondecreasing function tr such that



43

c, = f_u,(t)d,_(t)foreachi. So

?1

= Y_ aici

i=o

1%

= Y_ aif_ui(t)da(t)
i=0

>__ M f_da(t).

So f_da(t) < cr/M. Since u, is continuous on [a,b], it is bounded there, so

I¢1 = f:ui(t)da(t)

< f_lu,(t)lda(t)

< max ui(t)l C_- o<_,<bl _.

So S is bounded.

To show that S is convex, let u and v belong to S, and let t E [0, 1]. By Theorem

6.11, tu + (1 - t)v E .A4,_+I. By Theorem 6.17, there exist real constants a0,---, a,_

and a positive constant a such that

n

s = {(co,-..,c.) e .M.+_I _ a,c, = _}.
i=0

Let u = (Uo,.-.,un) and v = (vo,-.-,v,,). Then

So

ff'_ ai_t i = o_ = ff_ aiu i.

i=0 i=0

ot

rl r_

= t _ a,,, + (1- t) Y:.,,v,
i=O i=0

n

= _ a,(t_, + (1- t)v,),
i=0

and therefore tu + (1 - t)v belongs to S. Q
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Definition 6.14 Let c = (co,.." ,c,_) E .M,_+I. The values {t_} in the representation

p

c_= _ ,_ju_(tj), i = 0, 1,..., n; ,_ > 0, 1 < j < p
j=l

are called roots of the representation. If t" is a root, we say that the representation

involves t*. The nondecreasing function a which concentrates all its increase at the

points of {tj}_, with respective weights {)_j} is referred to as the associated measure

of the representation. (Note that ci = f_ ui(t)da(t) = _j=lP _jui(tj).) The index of the

set T = {11,'" ,tp} is defined to be that number obtained by counting interior points

as one and the end points a and b as one half. The index of the representation of c

and the index of the measure a generating c are each defined to be the indez of the

set of roots of the representation.

Note that, if a representation of c E J_,+x involves the minimum number of

points, then the index of the representation is the same as the index of c, I(c), in

Definition 6.12.

Theorem 6.19 Let c = (co,...,c,,) be an interior point of A4_+1 •

[a, b], there ezists a representation

Ci

p

= _ _ju_(tj) fo_ i = o,1,...,n; ,_j > o;
j=l

j= 1,2,-..,p; t" E {t_,t_,...,t,}

For each t" E

of indez (n + 1)/2 or (n + 2)/2.

Proof: Let c be an interior point of .M_+I and t" E [a, b]. Suppose there exists

,_ > 0 such that c = A(uo(t'),..-,u,_(t')). If n = 1 and either t" = a or t" = b, then

the index of c, I(c), would be ½. But by Theorem 6.16, c would be a boundary point.

So t" E (a,b), and c has a representation of index 1. In this case the conclusion of

the theorem is satisfied. If n > 2, then the index of c, I(c) satisfies 1(c) < 1 < ,_.+.3_

Again by Theorem 6.16, c would be a boundary point. So there does not exist )_ > 0

such that c = )_(uo(t'),...,u,,(t')) in case n _> 2.

Consider a section S E A4,_+1 containing c. Let c" = )_(uo(t'),... ,u_,(t')), where

)_ > 0 and c" E S. In case n = 1 and c" = c, the theorem holds, so assume c _ c'. In
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casen _> 2, it is necessary that c" y_ c. Since S is bounded, the ray c'+t(c-c'), t >_ O,

lies in S and pierces the boundary of fl4,,+1 at a point _ = c" + r(c - c'), where r > 1.

Soc=a_+(1-a)c'fora=l/re(0,1).

If I(_) < -_, then I(c) < a_ + 1, and by Theorem 6.16, c would be a boundary

point of A4,,+,. So I(e) > -_ and we have _ < I(e) < "+' Then I(_) = ,,-_A-- _ -- 2 " 2 or

'_ and therefore I(c) = _ or _ Since a and (1 - a) are both positive, Theorem_' 2 2 "

6.16 guarantees that c has a representation

p

j=l

where i = 0,.-., n, and )_j > 0 for each j = 1,..-, p. D

Definition 6.15 Let c be an interior point of A4,_+l . A representation for c of index

I(c) = (n + 1)/2 is called principal, and any representation of index I(c) <_ (n + 2)/2

is called canonical. A canonical or principal representation is designated upper if it

involves the end point b and lower if it does not.

Theorem 6.20 Let c be an interior point of A4,,+l for n >_ 2. There exist at least

two principal representations. If n = 2rn, one representation is found by prescribing

t* = a in Theorem 6.19, and the other is found by prescribing t" = b. The roots,

respectively, are

a = tl* < t2" < "- < tin+l* < b

a<s_* <s2" <...<sm+_*=b

If n = 2m + 1, one principal representation is found by prescribing t" = a to get roots

s •

a = sl < s2" <'"<sin+2 = b

The other principal representation has roots

a < t_" < t2* < ... < tm+l" < b

Proof: Let c be an interior point of .M,,+l. First suppose n = 2rn for some

positive integer m. By Theorem 6.19, there exists a representation of index _ or _2

involving t* = a. In the proof of the theorem, it was shown that c has a representation

of the form c = a5 + (1 - a)c', where 0 < c_ < 1, c" = )_(uo(a),...,u,_(a)) for some
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)_ > 0, and _ is on the boundary of A4,,+1. Since I(_) < _ = m + ½, there exists a

representation of _ of index less than or equal to m. If the representation of _ is less

than m, then the index of the representation c = a_+(1 - or)c" is less than m+ ½. But

this would mean c is a boundary point of A4,,+1. So I(_) = m. The representation

of _ does not involve a because if it did, the index of the representation of c would

be equal to the index of the representation of the boundary point _. Since m is an

integer, the representation of _ cannot involve b. So the representation of c involving

a has index m + _ and thus is principal. The representation does not involve b. A

second principal representation not involving a is determined by letting t" = b.

Now let n = 2m+1 for a positive integer m. As above, let t" = a, c" =

,_(uo(a),..',u,,(a)) with _ > 0, and c = a_+(1-a)c" for 0 < cr < 1. Then

1 then the given representation for cI(_) < _ So I(_) < m+½. IfI(_) < r_+7,

would have index less than m + 1, contradicting the fact that c is an interior point.

So I(_) = m + _, and the representation must involve either a or b. It cannot involve

a because, in that case, the representation of the interior point c would have the same

index as that of the boundary point _. Thus the representation of c involves both a

and b and has index m + 1 = -__+_1So it is principal.2

To construct another principal representation define the set

C,_+l(d) = {(u_(t),...,u,,(t)) l d < t < b}

where d E (a,b). Let A4,,+a(d) be the convex cone spanned by the curve C,+_(d).

First, we show there exists d' > a such that c belongs to the boundary of M,,+a(d').

Suppose no such d' exists. Define the sets A1 and A2 by

Ax = {die is an interior point of jt4,,+,(d)}

A2 = {die ¢ M,+,(d)}

The set A1 is not empty. To see this, note that since c is an interior point of .g4,,+1,

Theorem 6.20 guarantees it has a principal representation not involving a. Let t ° be

the smallest root, and choose d to satisfy a < d < t'. Then c is an interior point of

.Ad,+_id ) because the index of c with respect to [a, b] is the same as the index with

respect to [d, b].

The set A2 can be shown to be nonempty by considering separately the cases

where n is even and where n is odd. First, choose a principal representation of c with
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respect to [a, b] which does not involve b. Denoting (uo(t),..., u,,(t)) by U(t), c can

be expressed as
P

c = E a,y(t,),
j----I

where each Aj is positive. Let tp be the largest root, and choose d = tp.

First, suppose n = 2m for a positive integer m. Then the above principal rep-

resentation involves the endpoint a, and p = m + 1. If c E A4_+l(d), then it has a

representation involving d of index less than or equal to -_+A Let2 "

q

c= E'yju(_j),
j=l

where sl = d, q < rn + 1, and each 7j is positive. Then

P q

Since tp = sl, we have

Aju(tj)- _ _ju(_j) = 0.
j=l j=l

ajU(rj) = O,
j=l

where {r_,-.., r_} is a set of k distinct points in [a, b], and k < 2m + 1 = n + 1. Since

{uo(t),...,u,,(t)} is a T-System, this would mean each c_j = 0 for j = 1,...,k. But

this contradicts the assumption that each Aj in the principal representation of c with

respect to [a, b] is positive.

Now suppose n = 2m + 1 for m a positive integer. Since the representation of c

does not involve b, then by Theorem 6.20, it does not involve a. So p = m + 1. If

c E .M,,+_(d), then c has a representation in .£4,_+1(d) of index less than or equal to

m + 1. If the index is equal to m + 1, then c is an interior point of A4,+l(d), and

the representation can be selected so that neither d nor b is involved. So c has a

representation
q

where q <m + 1. Then

c = E _ju(sj),
j"-I

0
P q

= E _u(t_) - E.Ju(sJ)
j----1 j=l

k

= _ _u(r_),
j=l
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where k < 2(m + 1) = n + 1. As before a contradiction is obtained because

{uo(t),..-,u,,(t)} is a T-System. So both A_ and A2 are nonempty, and they can

be shown to be open. Suppose c does not belong to the boundary of A4,+x(d) for any

d > a. Then Ax and A2 provide a decomposition of the interval (a, b) into the disjoint

union of open sets. But this contradicts the fact that (a, b) is connected. Therefore,

there exists d' E (a, b) such that c belongs to the boundary of A4,,+_(d'). By Theorem

6.16, since c is a boundary point of A4,,+_(d'), the index of c related to [d', b] is less

than or equal to m + ½. If the index were less than or equal to m, then the index with

respect to [a, b] would be less than or equal to m + ½. But this would contradict the

fact that c is an interior point of .M,_+I. So the index of the representation related

to [d', b] must be m + ½. If b is involved, then since m is a positive integer, d' is not

involved. In this case, the index relative to [a, b] would also be m + ½, contradicting

the fact that c is an interior point of .M,,+I. So b is not involved and therefore d'

must be involved. This representation has m + 1 roots all belonging to (a, b) and by

definition is principal. []

Theorem 6.21 Let c = (Co,-.., cn) be an interior point of .M.+I and let o'. and cr

represent two different measures satisfying f l_id_r* = f #,dcr = c, (i = 0, 1,...,n)

where _r has indez ,__+.!or _ Let T = {tl t2 "" tp} be the roots of o', where2 2 " ' ' '

tl < t2 < "'" < tp. Then for every pair of roots tj and tj+l of cr lying in the open

interval (a, b), there ezists a point of increase of a* in the open interval (tj, tj+1). If

a has indez _, this remains true iftj = a, or tj+x = b.

Proof: First, note that since _r and _r. are measures, then they are right continuous

non-decreasing functions which concentrate all their increase at their roots. Let tj

and tj+a be consecutive roots of o'. Note that the existence of two distinct roots

implies that n >_ 1. If the index of o" is "2-__3-,assume these roots belong to the interval

(a, b). In this case n must be greater than 1, for if n = 1, then the index of o" would

be 1_.1 This would mean there are only two roots, and one is an endpoint. So there

are not two distinct roots in (a, b). If the index of _r is ___.3_,one of the roots can be

an endpoint.

Suppose _r. does not increase in the interval (t.7,tj+l). Let T = {tx, t2,---, tp} be

the set of roots of o" and define a function w : T _ {1,2} by

¢o(ti) = 1 iftiE{a, tj,tj+x,b}
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w(ti) = 2 ifti_{a, tj,tj+1,b}.

Under the above assumptions, it follows that

p

< n.
i=1

By Theorem 6.5, there exists a u-polynomial u such that u(t) _ 0 for t • (a, b) - T

and such that ti is a nodal zero if w(ti) = 1 and a nonnodal zero if w(ti) = 2. Since

w(tj) = 1 = w(tj+l), t_ and tj+l are nodal zeros of u. So u must change signs at t_ if

tj _ a and at tj+_ if tj+x _ b. Then (after multiplying by -1 if necessary) u vanishes

on (a, b) precisely at the roots of a and has the following properties:

>0 if t¢[t_,tj+x]
u(t) -

<0 if t•(tj,ti+_)

Now u(t) = _i"=oaiui(t) for constants ao,al,...,a,, and by assumption f uida* =

fuid_r for each i = 1,2,.-.,n. Sinceu(t) = 0 at the roots ofo', then fu(t)d¢t = O.

Also, a. has no points of increase in (tj,tj+l), so

0 = fu(t)(da.-da) = f u(t)da,

= _[a,t,] u(t)da* + f[t,+,.b] u(t)da,

Since u(t) > 0 for t ¢ It j, tj+_], if a, increases at a point which is not a root of a,

then J[_,t,l u(t)da • +a[tj+l.blu(t)do'* > 0. This contradiction implies that the roots of

or, are also roots of a. If a has index _--_-22, then as indicated above, n must be greater

than 1, and the number of roots of o" is less than or equal to -.e_+.2+ 1. If a has index2

n+l
n+x the number of roots is less than or equal to "5"- + 1. In either case, the number2 '

of roots of a is less than or equal to n + 1. Since {uo, ua," .,u,_} is a T-system, a

and a, cannot be distinct. Therefore, if a and a, are different representations, then

a. must have a point of increase in the interval (tj,tj+l). 0

Theorem 6.22 For each c in the interior of M,_+l , there ezist precisely two principal

representations. The roots of these representations strictly interlace.

The proof of this theorem is given in [28].
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Example: Let uo, ul,u2, and u3 be the functions

u0(t) = 1 _,x(t)= t u_(t) = t_ u_(t) = t3

These functions form a T-System on [0, 1], and .M4 is the smallest convex cone con-

taining the set

C4 = {(uo(t),ux(t),u2(t),u3(t)) l t E [0,1]}

Let c be the point

C:(C0, C1,C2,C3)'-- ( 1 dr, tdt, t 2 dr, t 3 dt)=(1,1/2,1/3,1/4).

By definition, c E .M4. Also, c is not a boundary point of 3d4, so by Theorem

6.22, there exist precisely two principal representations of c, and the roots of the two

representations strictly interlace. By Theorem 6.20, the two sets of roots must be

{al,S2, s3} and {tl,t2}, where

sl=0, 0<s2<l, sa=l and

0<tl<t2<l.

In the first case, the representation of c = (Co, cl, c2, c3) is given by

ci = aa_,i(s_) + _2_i(s_) + aaui(s3)

where

sl=0, s2=1/2, s3=l

a1=1/6, c_=2/3, aa= 1/6.

The second representation is found by Gaussian quadrature to be

where

tl = 3-,/5 _ 911 t2 = 3+v'5 _ .789
6 "- 6

_ = 1/2 _ = 1/9.

The index of each representation is 2, and the roots do strictly interlace.
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Example. Consider the same collection of functions discussed in the previous

example with the addition of the function u4(t) = t 4. Then

c5- {(uo(t),u1(t),u:(t),u3(t),u,(t))ItE [0,1]}

Let c be the point

/o' Z' Z' /o'" /o't'd') (1,112,113,114,11 ).C -" (Co, el, 02,C3, C4 ) --" ( 1 dt, tdt, tldt, dr, =

Then c E ,Ads and c is not a boundary point. By Theorem 6.20, the roots of the two

principal representations are {tl, t2, t3} and {s,, s_, sz } where

0 = tl < t2 < t3 < 1 and

0<Sl <.s2 <s3 = 1.

In each case the index of the representation is 91 The roots of the representation
--2"

obtained by Gaussian quadrature are

I v_ I 1

2 10 .9 5 + 1--O-

Although all representations involve the same number of points, the index of the

Gaussian quadrature representation is 3, and therefore it is a canonical representation

but not principal.

The following two theorems are stated without proof. The proofs can be found in

[281.

Theorem 6.23 Let c belong to the interior of jV(,_+l . Consider two different repre-

sentations of c of index less than or equal to (n + 1)/2 as follows:

p q

c, = __,_/ui(t/)= _ _/'u,(tj"), i = 0,1,..-,n.
j=l j=l

integer < r. The roots {tj'}_ and {tj"}_ strictly interlace in (a,b) but may possibly

share one or both of the end points a or b.

Theorem 6.24 Let c be in the interior of .A,4,,+l. For any t" satisfying a < t" < b,

there ezists a unique canonical representation of c involving t'.



CHAPTER VII

EXPONENTIAL INTERPOLATION

In the method of Gaussianquadrature, the integral of a polynomial p in _',,-1 over

a closed interval [a, b] is represented by the sum

f_p(t) dt = E_=l,_kp(tk)

where the nodes, tl, t2,-" ", t,_, belong to [a, hi, and the weights, )h, )_2,'" ",A,, are real

numbers• Such a representation is exact for all polynomials in _'_-1, and if the nodes

are chosen appropriately, it will be exact for all polynomials in T_,,-1. In this chapter,

Dirichlet polynomials will be considered. A Dirichlet polynomial is a function f which

has the representation

f(t) = aoe _°t +al e_lt +...+ ane "\'_t (7.1)

where ao, al,"-, a,_ are real constants and _0, _1,'", )_,, are complex constants.

Suppose f : [a, b] --* R is a function defined by 7.1 and assume ,_o, ha,'", ,_,, are

given real constants such that _o < A1 < "'" < )_,,- Assume also that to, tl,...,tp

are given points in [a,b] with to < tl < .-. < tp, at which the values of f are

known, and let f(tk) = wk for k = 0, 1,...,p. Theoretically, if p is large enough, the

value of the integral f_f(t) dt can be determined without knowledge of the coefficients

ao, al _ • • •, an.

Suppose the value of f is known at n + 1 distinct points to, tl,.. ", t,,. The set of

functions {expa_t}_ was shown in Chapter VI to be a T-system. So the determinant

U ....

is positive whenever a

ao, ax,.--, a,, are given by

exp(,_oto) exp(Aotl)

exp(Alto) exp(Altl)

.

exp(A,,to) exp(A,,tl)

< to < tx < --. <

• • •

o o •

t_ <

exp(Aot,_)

exp(Axt,_)

exp(,\nt,,)

b. Therefore, the coefficients

a0

al

an

=U-I
O31

O3n

52
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The integral can be calculated using the computed valuesof a0, al,'-', a,. But if the

matrix U is large or poorly conditioned, or if f is not known at n + 1 points, then

this method of computing the integral is either inefficient or impossible.

Define a vector c = (co, cl,..., _) in E "+x by

rb _,t
ci = j,e dr.

Then by Definition 6.8, c E .A,4,,+1. By Theorem 6.16 and Theorem 6.23, there exists

a representation of c of the form

p

ci = E "lje _itJ , i = O, 1, . . . , n
j=l

where 71,'Y2,'",'Y, are real constants, a _ tl < t_ <-.-< t, _< b, and p _< ["2-'_] + 1.

(The notation [r] denotes the greatest integer less than or equal to r.) Then

f:f(t)dt = aoy:e_'°tdt + alf:ealtdt +... + a,,f:ea"tdt
p p p

= oo ,,+o,
j=l j=l j=l

I'l ll n

k=O k=O k=O

For example, let

f(t) = aoe -t + ale -2. + a2e -3t + aae -at.

By making the substitution

z = e -t and

g(x) = ao+alx'4-a2x 2+a3 x3,

the integral of f over the interval [0, eo) becomes

fo_f(t)dt= fo '

As mentioned in the previous chapter, one

point

//o' Z'c = (Co, cl, c2, c3) = 1 dx,

g(z)dz.

of the principal representations of the

xdx, fo'x2dz, fo'x3dx )
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is given by
ci = 31ui(zl) + 32ui(z2),

where the roots xl and z2 are those found using Gaussian quadrature.

this method, the orthonormal functions

_0.= 1

_1 = v_(2x- 1)

_2 = vfS(6x _- 6x + 1).

are computed, and xl and x2 are the following zeros of the polynomial _2:

3-v_
zl - ._ .211

6

3+v_
x2 - _ .789.

6

Using the Lagrange method of calculating the coefficients, we have

fo x - x2 dx 1
m

31 = zl - z_ 2

fo x - xl dx 12 --- -- --"
2C2 -- X 1 2

The resulting representation is

When using

fO 1 _01 fO 1 fO 1 folX 3dxg(x) dx = ao l dx + al xdx + a2 x 2 dx + a3

= 3,g(x, ) + 3:g(_ _).

Since z = e -t, then t= - ln(x) and g(e -t) = etf(t). So

O0 1

le'2f(t2) 7,f(tl) + 72f(t2)fo f(t)dt = if(t1) + =
t

_e

where the roots tl and t2 and the weights 71 and 3'2 are given by

tl = -In(36v/3 )

"/1 ---- -e --2 _
-1

"r_ = _et2. = _
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The above procedure is applicable whenever the constants A0, A1,-", A, are con-

secutive negative integers, and it suggests the possibility of applying quadrature to

Dirichlet functions which do not have consecutive negative integer constants. For

exaxnple, let

f(t) = ao + ale -t + a2e -4t.

Define functions u0,ul, and u2 by

u0(t) = t

ul(t) = e-'

us(t) = e-4'

A representation of the point

can be found which involves only two roots. As in Gaussian quadrature, the set

{uo, Ul, us} is used to construct the orthonormal set {_0, ¢1, _2} where

The zeros of _:(t) are

Choosing

Co(t) = 1

v,(t) = v5(2_-'- 1)
3. 4t

¢_(t) = _(t_- - 4e-' + 1).

tl = .1951176928 and t2 = 1.365272252.

71 = .43122554915 and _'2 = .568774508

gives a representation of c of the form

c_= "rlu_(tl) + 72u,(t_)

for i = 0, 1,2. The integral of the function f is given by

°°f(t)e t dt + 72f(t2).,.flf(tl)
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Other representations can be found by first making the substitutions z = e-t and

g(z) = ao + alx + a2274 to get

f0 f01f(t)e-'dt= g(z)dz.

Then Gaussian quadrature is applicable. This requires the computation of an or-

thonormal set {gt0, _x, @2, _3}, and the zeros of _3 are the roots required in the

representation. The function @3 is determined to be

• 3(x) = v/7(20x 3- 30x 2 + 12x - 1)

and the zeros are
5 _ v/i-5

Xl --
10

The weights are determined to be

6x = 5/18,

1 5+v/_

, x2= 9--S' x3- 10

52=4/9, 53-5/18.

Then

1- g(x)dx

= 61g(x,) + 6 g( 2) + 63g( 3)

= 61f(tl) + 62f(t2) -F 63f(t3)

where

t, = -lnxx _ 2.183011081

t2 = -lnx_ _ .6931471806

t3 = -Inx3 _ .1195740121.

In the above representations, the first required knowledge of the function f only at

two points, whereas the second representation, which was found by use of Gaussian

quadrature, required three points. The index of the first is 2, and the index of the

second is 3. There are two other representations for the integral

r fo I g(x) dx

which each have index 1½. Each of these is a principal representation. One involves

the nodes zl and z2, where zl = 0 and 0 < z: < 1. The other involves nodes rl and

r2, where 0 < rl < 1 and r2 = 1. These yield the following representations.
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fo°°/(t)e-' at
tl -- oo

3'1 = .3213955956

= 71f(t,) + ?2f(t_)

t2 = .3054302439

3'2 = .6786044044

_oo f(t)e-' dt

sl = .9432378690

61 = .8188198595

_51f(sl) -I- _52f(s2)

$2_0

62 = .1811801405

In general, it would be desirable to find an efficient way of representing Dirichlet

polynomials which have exponents with arbitrary negative coefficients. For

example consider the function f given by

-Ltf(t) = e -2' + e-' + e-½' + e 3 .

-Lt -!tThe functions e -2t, e -t, e _ and e , form a T-System. So there should exist

constants 7x, 3'2, 73 and nodes tl, t2, t3 such that

°°f(t) e-'dt + ?2f(t2) + 73f(t3).71f(tl)



CHAPTER VIII

QUADRATURE METHODS

Let A be an n x n constant matrix, c a constant vector in II_", and I an interval.

Let x be a function from I to I1n. Consider the linear system

/al/ia2

= Ax y = cTz x(to) = to E I (8.1)

an

It can be assumed that to = 0, since an appropriate translation of the variable trans-

forms any system into this form. Assume that I has the form [0, oc) or [0. b] for a

real number b > 0. Assume also that the system is discretely observable with respect

to the set of points {t,,t2,... ,t,,,} C I.

The solution for x in (1) is given by

x(t ) = exp(At)z(O)

The n x n matrix exp(At) has the form exp(At) = (%(t)), where each qq(t) is given

by
$

qij(t) = ___ pijk(t)e _kt
k=l

where {_1, A2,--., A,} is the set of distinct eigenvalues of A, and each pijk is a poly-

nomial of degree less than n.

Then

y(t) = crz(t) = cT exp(At)x(0) = _ bijqij(t)
i,2=I

where each bij is a constant. Regrouping the terms gives

y(t) = ,,,(t)d"',
i=1

where each ri is a polynomial of degree less than n.

58



59

The solution y can be determined directly from knowledge of the vectors c and x(O).

But it can also be determined from known values of y at points tl, t2,-" ,t,,.

Suppose there exists an invertible constant matrix Q such that

y(t) = cT exp(At)QQ-'x(o)

and

cTexp(At)q= ..- On(t))

Then, letting

y has the representation

y = o21¢1(t) -_-_Jl¢2(t) +"'-_- when(t)

on I. Then for each k, the constant wk is determined without knowledge of Q or

x(0) if (y, ek) is known for each k. These values can be determined from the known

values y(tl), y(t:),..., y(t,,) if a quadrature formula involving points t l, t2,..., t,,, can

be found which is exact for all (q_j, ek), where i, j, k = 1,2,..., n.

If such a quadrature formula can be found, then for each k = 1,2,..., m,

(y, ek) (8.3)O._k --

f
= A_y(tl)¢k(tl) + A2y(t2)Ok(t2) +... + A,_y(tm)¢k(tm),

The eigenvalues of the matrix A will determine the form of the solution y, and it

will be assumed that A is in Jordan canonical form. This assumption leads to no loss

of generality since every matrix is similar to a matrix J in Jordan canonical form,

and the linearity of the dynamical system is preserved under a change of variables of

the form Z "- Px, where A = p-1jp.

(f'g) = fl f(t)g(t)dtt(t)"

/ )a2 2

_2n

(s.2)

where { _, (t), qh(t), • • •, ¢,_(t) } is an orthonormal collection of functions on the interval

I with respect to the inner product
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8.1 Nilpotent Matrices

If A is a nilpotent matrix, then the solution is a polynomial and can be written

as a linear combination of orthogonal polynomials. In special cases, these orthogonal

polynomials have been computed. In general, they can be obtained using a three term

recursion formula. Gaussian quadrature is applicable, and formulas are available for

some particular intervals _f integration and weight functions. See [8].

8.2 Matrices With One Real Eigenvalue

Let A be the following n x n matrix in Jordan form:

1

A __

1

• °
• °

• °

1

A

Then the solution y of the linear system (1) is given by

y(t) = cTx(t) = cr exp(At)x(O),

where exp(At) is the matrix

M(t) =

with

exp(At) = exp(At)M(t),

t3/3! ... t"-l/(n- 1)!
t2/2 ... 2)!

: : •

I t tz/2

1 t

Suppose there exists a set {¢_}_-1 of polynomials which are orthonormal with respect

to the inner product

(f,9) = [ f(t)g(t)dt,
Jl
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where

 o(t) = .,,,

¢1(t) = s_l +s2_t

¢2(t) = s3x + s=t + s=t _

¢,-1(t) = s.1 + s,_t +-.. + s,,t "-1,

and for each k = 1, 2,..., n, Skk ¢ O. See [19] for existence of such a set and recursion

formulas for computation of the polynomials.

Let cT - (cl c2 .-. c_ ). Since the

k= 1,2, • .., n. Therefore the matrix

Cl C2

C1

C

system is observable, c_ _ 0 for each

is invertible. Let

S .._

311 321

352

C3 C4 " " " Cn

C2 C3 "'' Ca-1

cj. c_ . . . c,,__
2 2 2

cl" . • . c,x--3
3! 3!

:

c_.3Z__
(n-x):

331 341 " " " 3nl

332 $42 " " " 3n2

,933 343 • . . 3n3

$44 • . . 3n4

: :

Then there exists a matrix

qll q12 q13 q14 "'" ql_

q22 q23 q24 "'" q2_

Q = q33 q:_ "'" q3_
q44 "'" q4_

: :

qna
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satisfying CQ = S. Since each skk _ O, Q is invertible, and

c r exp(At)Q = c r exp(M)M(t)Q

= exp(M)(1 t t 2 .--

= exp(At)(1 t t 2 .--

-- exp(M) (Co(t) ¢1(t)

t"-1 )CQ

t "-1 )S

•.. ¢.__(t). )

Let

Q-lz(o) =

Then the representation for y is

_n- 1

y(t) = cT exp(At)x(O) = cr exp(At)QQ-lz(O)

= exp(_t)(_0¢o(t) +_,¢1(t)+ " + _.,._,¢._1(t)).

Let f be defined by f(t) = exp(- At )y( t ). Since the set {¢k}_ -_ is orthonormal,

each coefficient wk is given by

wk = (f, Ck).

Since f and Ck are polynomials of degree less than or equal to n - 1, then fCk is

the product of exp(At) and a polynomial of degree less than or equal to 2n - 2.

The functions exp(At), texp(At), tSexp(M), ...,ts"-sexp(M) form a T-System. So

there exists a quadrature formula involving n points tl,t2,...,t, in I and weights

ax, as,-", n. If the values y(t_), y(ts),..., y(t,,) are known, wk is given by

_k -" a, exp(-At,)y(tl)¢k(t,) +

as exp(--At2)y(ts)¢k(t2) +... +

am exp(--At,,)y(t,,)¢k(t,).
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8.3 Distinct Real Eigenvalues

Let A be an n × n matrix with distinct real eigenvalues, and consider the linear

system (8.1). Assume to = 0, c has no zero components, and

A

)i 2

where _1 < _2 < "'" < _,,. The solution for y is given by

y(t) = c Tdiag{exp (A,t), exp (A2t),..., exp (A,_t) }x(0 ),

which has the form

y(t) = bl exp ()_lt) + b2 exp (A2t) +-.-+ b,_ exp (A,J)

for real constants/h, b2,.. -, b,,.

Using the Gram-Schmidt orthonormalizing process, an orthonormal set of functions

{¢1, _2,"', ¢,} with respect to the inner product (8.2) can be found satisfying

¢1(t) slle

¢,(t) = s,le _'t + s_2e _t +... + s._e _"t

where skk # 0 for each k = 1,...,n. Let

S ....

cT -" (CI_ C2, " " ° , CFL),

811 821 "531 " " " "-$nl

822 '$32 " " " Sn2

533 " " " Sn3

...

Sn n

and Q = diag{1/c,,1/c_,...,1/c,_}S.
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Then

y(t) = c a'diag{exp(A_t),exp(A2t),- ..,exp(A,t)} x(O)

= (exp(.ht) exp(,Xzt) ... exp(,X,t) ) diag{c_,c2,...,c.,,}z(O)

= (exp(,ht) exp(,X2t) --. exp(,X,t) ) diag{c_,c_,'",c,,}QQ -_z(O).

Note that

(exp(Alt) exp(A2t) ..- exp(Ant) ) diag{o

(exp(A1t) exp(A2t) ---

(Cx(t) ¢2(t)

Denote the constant matrix Q-1 x(0) by ( w_ w2 "'"

,cz,.-.,c,}O =

exp(Ant) ) S =

• .. ¢.(t) ).

02,, ). Then

y(t) = (_,(t) ,_=(t) ... ,_,,(t))

= wl¢l(t)+w2¢2(t)+"'+02,_(

02 1

022

02n

t). (8.4)

Since {¢x, Cz,"', ¢.} is an orthonormal set, the coefficients 02,,02z, • • • ,02,_ in (8.4) are

given by

= Jl Y(t)O_(t) dp(t) k= 1,2,...,n.02k

e _2t, .,e _"t,thenSince y(t) and Ck(t) are linear combinations of the functions e x_t, ..

y(t)¢k(t) is a linear combination of functions of the form e (_'+:b)t. Let B = {/3_, _2," " ",&}

be the set of distinct elements of {hi + Aj I i,j = 1,2,...,n}, where 2n - 1 _< s <

Then for each k = 1,2,...,n, there exist constants Akl,Ak2,"',Ak, such,(,+1)
2

that

Then

y(t)¢k(t) = Akle a'* + Ak2e _2' +... + Ak, eo't.

t

02_ = Jt(Aklea't + Ak2e a2t +... + A_,,e z't)d#(t).

Suppose I is the closed finite interval [a, b]. The functions exp(fl_t), exp(/3fl),. • -,

exp(B,t) form a Tchebycheff system (T-system)over [a, b]. The point c = (cl, c:,--., c,),
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where

= exp(_it)du(t),

belongs to the moment space .M,. So by Theorems 6.16 and 6.19, there exists a

quadrature formula involving a set of r points tl,t2,'" , t,, where r -< _2 • If any

of the points are preassigned, a quadrature formula still exists, but it might require

more than ,_*.2 points. The maximum number of points required would be s.2

It is shown in [7] that if a quadrature rule of the form

fab nexp(flit )di_( t ) = __, aj exp(fl;tj)
j-=l

i=l,2,...,s

exists, then s < 2n. Since 2n - 1 < s, we have s = 2n - 1 or s = 2n.

s > 2n, the values of y(t) at more than n points would be required.

If, however,

8.4 Real Repeated Eigenvalues

Let A be an n x n matrix with real eigenvalues, where some of the eigenvalues

are repeated. Let A1,12,-..

(8.1) has the form

, A, be the distinct eigenvalues. Then the solution y of

where each ri is a polynomial of degree less than n.

combination of the linearly independent functions:

$

y(t) = ___ ri(t)exp(Ait)
i=l

This can be written as a linear

exp(,_lt), texp(Alt), tZexp(,_,t), ..., tmlexp(Alt),

exp(Azt), texp(Azt), tZexp(Azt),-.-, tmzexp(Azt),

exp(A$t), texp(A$t), t 2exp(A,t), ..- , t m'exp(A,t)

(8.5)

where mi + 1 is the multiplicity of the eigenvalue Ai.

Theoretically, this collection of functions can be orthonormalized, and the previous

method could be used to determine a solution of (8.1) by evaluating constants of the

form

= [ y(t)¢k(t)d_(t)._d k
JI
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Each function y(t)¢k(t) is a linear combination of the linearly independent func-

tions:

exp(_t), texp(_lt), t =exp(/3,t), ... , t '_lexp(3tt),

exp(_t), texp(3=t), t=exp(/_=t), "-', t'_exp(3=t), (8.6)

exp(3,t), texp(3_t), t2exp(3,t), .", t"'exp(3_t)

where B -- {31,/_,"" ,3_} is the set of distinct elements of the set {Ai + Ai [ i,j =

1,2,...,n}. If each of the above functions is integrable over I, then they form a

T-system. In that case, quadrature formulas exist which require ,__+A2or less points,

where s = r + _,"--1 n,.

8.5 Complex Eigenvalues

Suppose the n x n matrix A has complex eigenvalues, some of which are repeated.

If A1, A2,- ",A, are the distinct eigenvalues, then the solution y of (8.1) can be written

as a linear combination of the functions given in (8.6). If for each k, A_ = u_ + irk

where uk and vk are real, the solution y can be written as a linear combination of the

functions:

exp(uxt) cos [vllt,

exp(ul t) sin Iv1 It,

exp(u,t) cos Iv, It,

exp(uA) sin Iv, It,

t exp(utt)cos Ivxlt,

t exp(ult) sin Iv1 It,

t exp(u,t) cos Iv, It,

t exp(u,t)sin Iv, It,

• .. tm, exp(uxt)coslvllt,

... t=,exp(u,t)sinlv, lt,

• .. tm' exp( ,,t) cos Iv,It,

• -. tm' exp(u,t) sin Iv lt.

(8.7)

Note that if the Jordan matrix A is similar to a real matrix, then the eigenvalues

occur in conjugate pairs, and the functions in (8.7) are not all distinct. In order to

apply the method used for real eigenvalues to matrices with complex eigenvalues, a

maximal linearly independent set would have to be selected from the functions in

(8.7), and this set would have to be transformed into a set of orthonormal functions

{¢k}. Then, as before,

where

y(t) =  1¢1(t) +--. +

wk = _ y(t)¢k(t)d#(t).
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The function y(t)¢k(t) would be in the span of a set T, where T is a linearly

independent subset of a set

S = U_'=l(exp(ctkt) cos flkt, exp(crkt) sin flkt,

t exp(at, t) cos flkt, t exp(a_t) sin flk t,

• - "_

t "k exp(akt) cos flkt, t _ exp(akt) sin flkt}.

Quadrature formulas for such integrals are known for special cases. See, for example,

[15] and [30]. The existence of a quadrature formula is guaranteed in case S is a T-

system with respect to the interval of integration. For example, the system of 2m + 1

functions

1, cos t, sin t,.-., cos mr, sin mt

is a T-system on any interval [a, b] of length less than 2rr. Furthermore, if {u_} is a

T-system and the function r is positive and continuous, then {rui} is a T-system.

See [28].

Other examples of T-systems are eigenfunctions of Sturm-Liouville operators. Let

the operator L be defined by

where p is continuous and positive on [a,b]. Let K(x,y) be the Green's function

associated with the eigenvalue problem

L(qt) = £_b

with boundary conditions

_(a)sina- p(a)¢'(a)cosa = 0

ai(b)sinfl+ p(b)d/(b)cos _ = O.

If K(x, y) satisfies certain conditions, then the set of eigenfunctions 60, _bl,..., _bn is

a T-system on any closed subinterval of (at b). See [10].
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8.6 Remarks

In summary, the determination of a solution y to (1) can be found by a method

which depends on orthonormalizing a given set of functions which form a T-system

and finding the nodes and weights in a quadrature formula. In some cases, this

method has been completely worked out. In the remaining cases, the theory of T-

systems guarantees the existence of quadrature formulas, but the number of data

points required might be greater than n. Further study of these remaining cases to

determine the least number of data points required and efficient methods of deter-

mining weights and nodes would be helpful.
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